解答:
解:(Ⅰ)函數f(x)的定義域為(-1,+∞),f′(x)=
,
①當1<a<2時,若x∈(-1,a
2-2a),則f′(x)>0,此時函數f(x)在(-1,a
2-2a)上是增函數,
若x∈(a
2-2a,0),則f′(x)<0,此時函數f(x)在(a
2-2a,0)上是減函數,
若x∈(0,+∞),則f′(x)>0,此時函數f(x)在(0,+∞)上是增函數.
②當a=2時,f′(x)>0,此時函數f(x)在(-1,+∞)上是增函數,
③當a>2時,若x∈(-1,0),則f′(x)>0,此時函數f(x)在(-1,0)上是增函數,
若x∈(0,a
2-2a),則f′(x)<0,此時函數f(x)在(0,a
2-2a)上是減函數,
若x∈(a
2-2a,+∞),則f′(x)>0,此時函數f(x)在(a
2-2a,+∞)上是增函數.
(Ⅱ)由(Ⅰ)知,當a=2時,此時函數f(x)在(-1,+∞)上是增函數,
當x∈(0,+∞)時,f(x)>f(0)=0,
即ln(x+1)>
,(x>0),
又由(Ⅰ)知,當a=3時,f(x)在(0,3)上是減函數,
當x∈(0,3)時,f(x)<f(0)=0,ln(x+1)<
,
下面用數學歸納法進行證明
<a
n≤
成立,
①當n=1時,由已知
<a1=1,故結論成立.
②假設當n=k時結論成立,即
<ak≤,
則當n=k+1時,a
n+1=ln(a
n+1)>ln(
+1)
>=,
a
n+1=ln(a
n+1)<ln(
+1)
<=,
即當n=k+1時,
<ak+1≤成立,
綜上由①②可知,對任何n∈N
•結論都成立.