本題考查橢圓的幾何性質(zhì)及最值問題.
點

在橢圓上,令

,變形得

,由于考慮直線斜率的定義

可看作是橢圓

上的點

與點

的連線

的斜率. 設(shè)直線

的方程為

,代入橢圓方程

得

即

。由題意此方程必有實數(shù)解,則有

,即

,即

,解得

.
故

的最大值為

所以正確答案為

練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知點

,點A、B分別在x軸負半軸和y軸上,且

,點

滿足

,當點B在y軸上移動時,記點C的軌跡為E。
(1)求曲線E的方程;
(2)過點Q(1,0)且斜率為
k的直線

交曲線E于不同的兩點M、N,若D(

,0),且

·

>0,求
k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題13分)
已知橢圓的焦點在

軸上,它的一個頂點恰好是拋物線

的焦點,離心率

,過橢圓的右焦點

作不與坐標軸垂直的直線

,交橢圓于A、B兩點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)點M(m,0)是線段OF上的一個動點,且

,求

取值范圍;
(Ⅲ)設(shè)點C是點A關(guān)于x軸的對稱點,在x軸上是否存在一個定點N,使得C、B、N 三點共線?若存在,求出定點N的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知

,

,

其中

是常數(shù)且

,若

的最小值 是

,滿足條件的點

是橢圓

一弦的中點,則此弦所在的直線方程為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知點

是橢圓

上任意一點

,直線

的方程為

(I)判斷直線

與橢圓E交點的個數(shù);
(II)直線

過P點與直線

垂直,點M(-1,0)關(guān)于直線

的對稱點為N,直線PN恒
過一定點G,求點G的坐標。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在直角三角形ABC中,

則以點A、B為焦點且過點C的橢圓的離心率e等于
查看答案和解析>>