【題目】已知是定義在R上的奇函數(shù),且滿足
,
=1,數(shù)列{
}滿足
=﹣1,
(
),其中
是數(shù)列{
}的前n項(xiàng)和,則
=
A. ﹣2 B. ﹣1 C. 0 D. 1
【答案】A
【解析】
推導(dǎo)出Sn=2an+n,從而an=Sn﹣Sn﹣1=2an+n﹣2an﹣1﹣(n﹣1),得{an﹣1}是首項(xiàng)為﹣2,公差為2的等比數(shù)列,求出a5=﹣31,a6=﹣63,由f(2﹣x)=f(x),f(﹣1)=1,得f(x)關(guān)于直線x=1對(duì)稱,由函數(shù)f(x)是定義在R上的奇函數(shù),得到函數(shù)f(x)是一個(gè)周期函數(shù),且T=4,由此能求出f(a5)+f(a6).
∵數(shù)列{an}滿足a1=﹣1,(n∈N+),其中Sn是數(shù)列{an}的前n項(xiàng)和,
∴Sn=2an+n,
an=Sn﹣Sn﹣1=2an+n﹣2an﹣1﹣(n﹣1),
整理,得=2,
∵a1﹣1=﹣2,
∴{an﹣1}是首項(xiàng)為﹣2,公差為2的等比數(shù)列,
∴an﹣1=﹣2×2n﹣1,∴an=1﹣2×2n﹣1.
∴a5=1﹣2×24=﹣31,=﹣63,
∵f(2﹣x)=f(x),f(﹣1)=1,
∴f(x)關(guān)于直線x=1對(duì)稱,
又∵函數(shù)f(x)是定義在R上的奇函數(shù)
∴函數(shù)f(x)是一個(gè)周期函數(shù),且T=4,
∴f(a5)+f(a6)=f(﹣31)+f(﹣63)
=f(32﹣31)+f(64﹣63)=f(1)+f(1)=﹣f(﹣1)﹣f(﹣1)=﹣1﹣1=﹣2.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)(其中
)滿足下列三個(gè)條件:①
圖象過(guò)坐標(biāo)原點(diǎn);②對(duì)于任意
都
成立;③方程
有兩個(gè)相等的實(shí)數(shù)根.
(1)求函數(shù)的解析式;
(2)令(其中
),求函數(shù)
的單調(diào)區(qū)間(直接寫出結(jié)果即可);
(3)研究方程在區(qū)間
內(nèi)的解的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)1時(shí),函數(shù)
的值域是________;
(2)若函數(shù)的圖像與直線
只有一個(gè)公共點(diǎn),則實(shí)數(shù)
的取值范圍是______
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某新建小區(qū)規(guī)劃利用一塊空地進(jìn)行配套綠化.已知空地的一邊是直路,余下的外圍是拋物線的一段弧,直路
的中垂線恰是該拋物線的對(duì)稱軸(如圖),點(diǎn)O是
的中點(diǎn).擬在這個(gè)地上劃出一個(gè)等腰梯形
區(qū)域種植草坪,其中
均在該拋物線上.經(jīng)測(cè)量,直路
長(zhǎng)為60米,拋物線的頂點(diǎn)P到直路
的距離為60米.設(shè)點(diǎn)C到拋物線的對(duì)稱軸的距離為m米,到直路
的距離為n米.
(1)求出n關(guān)于m的函數(shù)關(guān)系式.
(2)當(dāng)m為多大時(shí),等腰梯形草坪的面積最大?并求出其最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在定義域上是單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)討論的極值點(diǎn)的個(gè)數(shù);
(3)若有兩個(gè)極值點(diǎn)
,且
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知半徑為
的圓
,圓心在
軸正半軸上,且與直線
相切.
(1)求圓的方程;
(2)在圓上,是否存在點(diǎn)
,滿足
,其中,點(diǎn)
的坐標(biāo)是
.若存在,指出有幾個(gè)這樣的點(diǎn);若不存在,請(qǐng)說(shuō)明理由;
(3)若在圓上存在點(diǎn)
,使得直線
與圓
相交不同兩點(diǎn)
,求
的取值范圍.并求出使得
的面積最大的點(diǎn)
的坐標(biāo)及對(duì)應(yīng)的
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)滿足
.
(1)求的解析式;
(2)若在
上單調(diào),求
的取值范圍;
(3)設(shè)(
且a≠1),(
且
),當(dāng)
時(shí),
有最大值14,試求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)定義域?yàn)?/span>R的奇函數(shù)(a為實(shí)數(shù))
(1)求a的值;
(2)判斷的單調(diào)性(不必證明),并求出
的值域;
(3)若對(duì)任意的,不等式
恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com