日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已(12分)知橢圓的中心在坐標(biāo)原點(diǎn),離心率為,一個(gè)焦點(diǎn)是F(0,1).
          (Ⅰ)求橢圓方程;
          (Ⅱ)直線過點(diǎn)F交橢圓于A、B兩點(diǎn),且,求直線的方程.

          (Ⅰ).(Ⅱ)

          解析試題分析: (1)根據(jù)已知中的條件得到離心率和a的關(guān)系式,進(jìn)而得到橢圓的方程。
          (2)對(duì)于直線斜率是否存在要給予討論,并聯(lián)立方程組的思想,結(jié)合韋達(dá)定理和向量關(guān)系式得到k的方程,求解得到k的值。
          解:(Ⅰ)設(shè)橢圓方程為>b>0).
          依題意,, c=1,,,………………………………2分
          ∴所求橢圓方程為 .………4分
          (Ⅱ)若直線的斜率k不存在,則不滿足
          當(dāng)直線的斜率k存在時(shí),設(shè)直線的方程為.因?yàn)橹本過橢圓的焦點(diǎn)F(0,1),所以取任何實(shí)數(shù), 直線與橢圓均有兩個(gè)交點(diǎn)A、B.
          設(shè)A 
          聯(lián)立方程   消去y,
          .…………6分
          ,     ①
          ,                 ②
          由F(0,1),A
          ,
          ,∴,
          .……………………8分
          代入①、②,
          , ③
          , ④……………10分
          由③、④ 得,
          化簡(jiǎn)得,解得.∴直線的方程為:.12分
          考點(diǎn):本題主要考查了直線與橢圓的位置關(guān)系的運(yùn)用。
          點(diǎn)評(píng):解決該試題的關(guān)鍵是熟練掌握橢圓的幾何性質(zhì),根據(jù)其性質(zhì)得到參數(shù)a,b的值,進(jìn)而得到其方程。同時(shí)聯(lián)立方程組,結(jié)合向量的關(guān)系式和韋達(dá)定理得到從那數(shù)k的值。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          ( 本小題滿分12分)如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)上,點(diǎn)上,且滿足的軌跡為曲線

          求曲線的方程;
          若過定點(diǎn)F(0,2)的直線交曲線于不同的兩點(diǎn)(點(diǎn)在點(diǎn)之間),且滿足,求的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)雙曲線C與橢圓有相同的焦點(diǎn),直線y=的一條漸近線.
          (Ⅰ)求雙曲線的方程;
          (Ⅱ)過點(diǎn)(0,4)的直線,交雙曲線于A,B兩點(diǎn),交x軸于點(diǎn)(點(diǎn)與的頂點(diǎn)不重合)。當(dāng) =,且時(shí),求點(diǎn)的坐標(biāo)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓中心在原點(diǎn),焦點(diǎn)在軸上,橢圓短軸的端點(diǎn)和焦點(diǎn)組成的四邊形為正方形,且.
          (1)求橢圓方程;
          (2)直線過點(diǎn),且與橢圓相交于、不同的兩點(diǎn),當(dāng)面積取得最大值時(shí),求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分10分)已知中心在原點(diǎn)O,焦點(diǎn)在軸上的橢圓C的離心率為,點(diǎn)A,B分別是橢圓C的長(zhǎng)軸、短軸的端點(diǎn),點(diǎn)O到直線AB的距離為。

          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)已知點(diǎn)E(3,0),設(shè)點(diǎn)P、Q是橢圓C上的兩個(gè)動(dòng)點(diǎn),滿足EP⊥EQ,
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓)的離心率,直線與橢圓交于不同的兩點(diǎn),以線段為直徑作圓,圓心為
          (Ⅰ)求橢圓的方程;
          (Ⅱ)當(dāng)圓軸相切的時(shí)候,求的值;
          (Ⅲ)若為坐標(biāo)原點(diǎn),求面積的最大值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)
          設(shè)雙曲線與直線交于兩個(gè)不同的點(diǎn),求雙曲線的離心率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (12分)過橢圓的一個(gè)焦點(diǎn)的直線交橢圓于、兩點(diǎn),求面積的最大值.(為坐標(biāo)原點(diǎn))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (12分)已知點(diǎn)的坐標(biāo)分別為,直線相交于點(diǎn),且它們的斜率之積是,試討論點(diǎn)的軌跡是什么。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案