【題目】在甲、乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的2×2列聯(lián)表.已知在全部105人中抽到隨機(jī)抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可能性要求,能否認(rèn)為“成績與班級有關(guān)系”?
P(K2≥x0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
x0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式及數(shù)據(jù):K2=.
【答案】(1)
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | 45 | 55 |
乙班 | 20 | 30 | 50 |
合計 | 30 | 75 | 105 |
; (2)按95%的可能性要求,可以認(rèn)為“成績與班級有關(guān)系”.
【解析】
(1)根據(jù)隨機(jī)抽取1人為優(yōu)秀的概率為,得出優(yōu)秀的總?cè)藬?shù),從而得出乙班優(yōu)秀人數(shù),同時也能得出甲班非優(yōu)秀的人數(shù),其余數(shù)據(jù)進(jìn)而可求;
(2)根據(jù)公式K2=,求出相關(guān)指數(shù)
的值,然后進(jìn)行對比臨界值,即可得出結(jié)果.
解:(1)優(yōu)秀人數(shù)為105×=30,
∴乙班優(yōu)秀人數(shù)為30-10=20(人),
甲班非優(yōu)秀人數(shù)為105-30-30=45(人),
故列聯(lián)表如下:
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | 45 | 55 |
乙班 | 20 | 30 | 50 |
合計 | 30 | 75 | 105 |
(2)根據(jù)列聯(lián)表中的數(shù)據(jù),
所以若按95%的可能性要求,可以認(rèn)為“成績與班級有關(guān)系”.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次考試結(jié)束,甲、乙、丙三位同學(xué)聚在一起聊天.甲說:“你們的成績都沒有我高”乙說:“我的成績一定比丙高
”丙說:“你們的成績都比我高
”成績公布后,三人成績互不相同且三人中恰有一人說得不對,若將三人成績從高到低排序,則甲排在第______名
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓錐PO中,AB是圓O的直徑,且AB=4,C是底面圓O上一點,且AC=2,點D為半徑OB的中點,連接PD.
(1)求證:PC在平面APB內(nèi)的射影是PD;
(2)若PA=4,求底面圓心O到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知從1開始的連續(xù)奇數(shù)蛇形排列形成寶塔形數(shù)表,第一行為1,第二行為3,5,第三行為7,9,11,第四行為13,15,17,19,…,如圖所示,在寶塔形數(shù)表中位于第行、第
列的數(shù)記為
,比如
,
,
.若
,則
______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列各題中,用符號“”把
,
連起來.
(1)實數(shù)
滿足
,
或
;
(2),
且
;
(3),
;
(4)是偶數(shù),
是偶數(shù)(其中
,
都是整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體中,平面平面
,四邊形
為邊長為2的菱形,
為直角梯形,四邊形
為平行四邊形,且
,
,
.
(1)若,
分別為
,
的中點,求證:
平面
;
(2)若,
與平面
所成角的正弦值為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以平面直角坐標(biāo)系的原點為極點,
軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位.已知直線
的參數(shù)方程為
(
為參數(shù)),曲線
的參數(shù)方程為
(
為參數(shù)),曲線
的極坐標(biāo)方程為
.
(1)求曲線和
的公共點的極坐標(biāo);
(2)若為曲線
上的一個動點,求
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)滿足
.
(1)求函數(shù)的解析式;
(2)若函數(shù),是否存在實數(shù)
使得
的最小值為0?若存在,求出
的值;若不存在,說明理由;
(3)若函數(shù),是否存在實數(shù)
,使函數(shù)
在
上的值域為
?若存在,求出實數(shù)
的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com