日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】定義,)為有限實數(shù)列的波動強(qiáng)度.

          1)求數(shù)列1,4,23的波動強(qiáng)度;

          2)若數(shù)列,滿足,判斷是否正確,如果正確請證明,如果錯誤請舉出反例;

          3)設(shè)數(shù)列,,是數(shù)列,,,的一個排列,求的最大值,并說明理由.

          【答案】(1)(2)是正確的,詳見解析(3)當(dāng)為偶數(shù)時,,;當(dāng)為奇數(shù)時,

          【解析】

          1)根據(jù)波動強(qiáng)度的定義直接計算;

          2)作差,利用判斷正負(fù)即可;

          3)設(shè),是單調(diào)遞增數(shù)列,可整理,其中,并且.經(jīng)過上述調(diào)整后的數(shù)列,系數(shù)不可能為0,的奇偶性討論,確定各自含有的的個數(shù),進(jìn)而求出的最大值.

          解:(1

          2是正確的

          證明:

          所以,即

          并且當(dāng)時,可以取等號,當(dāng)時,可以取等號,

          所以等號可以取到;

          3)設(shè),是單調(diào)遞增數(shù)列.

          是奇、偶數(shù)情況討論

          ,其中,,并且.經(jīng)過上述調(diào)整后的數(shù)列,系數(shù)不可能為0.

          當(dāng)為偶數(shù)時,系數(shù)中有,.

          當(dāng)為奇數(shù)時,有兩種情況:系數(shù)中有;

          或系數(shù)中有,.

          [1]是偶數(shù),,

          [2]是奇數(shù),,

          因為,,可知

          綜上,當(dāng)為偶數(shù)時,,;

          當(dāng)為奇數(shù)時,,

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列判斷正確的是( )

          A.”是“”的充分不必要條件

          B.函數(shù)的最小值為2

          C.當(dāng)時,命題“若,則”為真命題

          D.命題“”的否定是“,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方體的棱長為2,PBC的中點,點Q是棱上的動點.

          1)點Q在何位置時,直線,DC,AP交于一點,并說明理由;

          2)求三棱錐的體積;

          3)棱上是否存在動點Q,使得與平面所成角的正弦值為,若存在指出點Q在棱上的位置,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)求證:函數(shù)是偶函數(shù);

          (2)設(shè),求關(guān)于的函數(shù)時的值域的表達(dá)式;

          (3)若關(guān)于的不等式時恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程:在直角坐標(biāo)系中,曲線為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          1)求曲線的極坐標(biāo)方程;

          2)已知點,直線的極坐標(biāo)方程為,它與曲線的交點為,與曲線的交點為,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在正方形中,的中點,點在線段上,且.若將 分別沿折起,使兩點重合于點,如圖2.

          圖1 圖2

          (1)求證:平面;

          (2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知(其中.

          1)當(dāng)時,計算;

          2)記,試比較的大小,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系 中,曲線 的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程為 .

          1)求直線和曲線的普通方程;

          2)已知點,且直線和曲線交于兩點,求 的值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某社區(qū)名居民參加年國慶活動,他們的年齡在歲至歲之間,將年齡按、、、、分組,得到的頻率分布直方圖如圖所示.

          1)求的值,并求該社區(qū)參加年國慶活動的居民的平均年齡(每個分組取中間值作代表);

          2)現(xiàn)從年齡在、的人員中按分層抽樣的方法抽取人,再從這人中隨機(jī)抽取人進(jìn)行座談,用表示參與座談的居民的年齡在的人數(shù),求的分布列和數(shù)學(xué)期望;

          3)若用樣本的頻率代替概率,用隨機(jī)抽樣的方法從該地歲至歲之間的市民中抽取名進(jìn)行調(diào)查,其中有名市民的年齡在的概率為,當(dāng)最大時,求的值.

          查看答案和解析>>

          同步練習(xí)冊答案