【題目】下列判斷正確的是( )
A.“”是“
”的充分不必要條件
B.函數(shù)的最小值為2
C.當(dāng)時,命題“若
,則
”為真命題
D.命題“,
”的否定是“
,
”
【答案】C
【解析】
求解對數(shù)不等式之后即可考查選項A是否正確,利用換元法可確定選項B中函數(shù)的最小值,利用原命題與逆否命題的關(guān)系可判斷C選項是否正確,否定全稱命題即可確定選項D是否正確.
逐一考查所給命題的真假:
對于選項A:由可得
,即
,
故“”是“
”的必要不充分條件,則題中的命題為假命題;
對于選項B:令,
由對勾函數(shù)的性質(zhì)可知函數(shù)單調(diào)遞增,其最小值為
,則題中的命題為假命題;
對于選項C:考查其逆否命題:“若,則
”,
很明顯該命題為真命題,則題中的命題為真命題;
對于選項D:命題“,
”的否定是“
,
”,則題中的命題為假命題;
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱柱的側(cè)面
是圓柱的軸截面,C是圓柱底面圓周上不與A、B重合的一個點。
(1)若圓柱的軸截面是正方形,當(dāng)點C是弧AB的中點時,求異面直線與AB的所成角的大小(結(jié)果用反三角函數(shù)值表示);
(2)當(dāng)點C是弧AB的中點時,求四棱錐體積與圓柱體積的比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其導(dǎo)函數(shù)設(shè)為
.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)有兩個極值點
,
,試用
表示
;
(Ⅲ)在(Ⅱ)的條件下,若的極值點恰為
的零點,試求
,
這兩個函數(shù)的所有極值之和的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的直角坐標(biāo)方程和直線
的普通方程;
(2)若直線與曲線
交于
、
兩點,設(shè)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為D的函數(shù)y=f(x),如果存在區(qū)間[m,n]D,同時滿足:
①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);
②當(dāng)定義域是[m,n]時,f(x)的值域也是[m,n].則稱[m,n]是該函數(shù)的“和諧區(qū)間”.
(1)證明:[0,1]是函數(shù)y=f(x)=x2的一個“和諧區(qū)間”.
(2)求證:函數(shù)不存在“和諧區(qū)間”.
(3)已知:函數(shù)(a∈R,a≠0)有“和諧區(qū)間”[m,n],當(dāng)a變化時,求出n﹣m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(m,n為常數(shù)),在
處的切線方程為
.
(Ⅰ)求的解析式并寫出定義域;
(Ⅱ)若,使得對
上恒有
成立,求實數(shù)
的取值范圍;
(Ⅲ)若有兩個不同的零點
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,
,
,
、
分別是
、
的中點,將三角形
沿
折起,則下列說法正確的是______________.
(1)不論折至何位置(不在平面
內(nèi)),都有
平面
;
(2)不論折至何位置,都有
;
(3)不論折至何位置(不在平面
內(nèi)),都有
;
(4)在折起過程中,一定存在某個位置,使.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若數(shù)列滿足,存在實數(shù)
,對任意
,都有
,則稱數(shù)列
有上界,
是數(shù)列
的一個上界,已知定理:單調(diào)遞增有上界的數(shù)列收斂(即極限存在).
(1)數(shù)列是否存在上界?若存在,試求其所有上界中的最小值;若不存在,請說明理由;
(2)若非負(fù)數(shù)列滿足
,
(
),求證:1是非負(fù)數(shù)列
的一個上界,且數(shù)列
的極限存在,并求其極限;
(3)若正項遞增數(shù)列無上界,證明:存在
,當(dāng)
時,恒有
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com