日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

          1)求曲線的直角坐標(biāo)方程和直線的普通方程;

          2)若直線與曲線交于、兩點(diǎn),設(shè),求的值.

          【答案】1;(2.

          【解析】

          1)在曲線的極坐標(biāo)方程中,由,可將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,在直線的參數(shù)方程中消去參數(shù),可得出直線的普通方程;

          2)將直線的參數(shù)方程表示為為參數(shù)),并設(shè)點(diǎn)、對(duì)應(yīng)的參數(shù)分別為、,將直線的參數(shù)方程與曲線的普通方程聯(lián)立,得出關(guān)于的二次方程,并列出韋達(dá)定理,可計(jì)算出的值.

          1)在曲線的極坐標(biāo)方程中,由可得出曲線的普通方程為,即.

          在直線的參數(shù)方程中消去,即

          2)直線的參數(shù)方程表示為為參數(shù)),

          并設(shè)點(diǎn)對(duì)應(yīng)的參數(shù)分別為、,

          將直線的參數(shù)方程與曲線的直角坐標(biāo)方程聯(lián)立,消去、.

          由韋達(dá)定理得,.

          因此,.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線過(guò)點(diǎn),圓:,直線與圓交于兩點(diǎn).

          ) 求直線的方程;

          )求直線的斜率的取值范圍;

          (Ⅲ)是否存在過(guò)點(diǎn)且垂直平分弦的直線?若存在,求直線斜率的值,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

          (2)求函數(shù)f(x)的極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】隨機(jī)調(diào)查某社區(qū)80個(gè)人,以研究這一社區(qū)居民在晚上8點(diǎn)至十點(diǎn)時(shí)間段的休閑方式與性別的關(guān)系,得到下面的數(shù)據(jù)表:

          1)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,求這3人中至少有1人是以看書為休閑方式的概率;

          2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在晚上8點(diǎn)至十點(diǎn)時(shí)間段的休閑方式與性別有關(guān)系?”

          參考公式:,其中.

          參考數(shù)據(jù):

          0.15

          0.10

          0.05

          0.025

          0.010

          2.072

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,,,O的中點(diǎn).

          1)證明:平面;

          2)若,,,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知是圓錐的高,是圓錐底面的直徑,是底面圓周上一點(diǎn),的中點(diǎn),平面和平面將圓錐截去部分后的幾何體如圖所示.

          1)求證:平面平面;

          2)若,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列判斷正確的是( )

          A.”是“”的充分不必要條件

          B.函數(shù)的最小值為2

          C.當(dāng)時(shí),命題“若,則”為真命題

          D.命題“”的否定是“,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】將數(shù)列的前n項(xiàng)和分成兩部分,且兩部分的項(xiàng)數(shù)分別是i,,若兩部分的和相等,則稱數(shù)列的前n項(xiàng)和能夠進(jìn)行等和分割.

          ,,試寫出數(shù)列的前4項(xiàng)和的所有等和分割;

          求證:等差數(shù)列的前項(xiàng)和能夠進(jìn)行等和分割;

          若數(shù)列的通項(xiàng)公式為:,且數(shù)列的前n項(xiàng)和能進(jìn)行等和分割,求所有滿足條件的n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已如橢圓C:的兩個(gè)焦點(diǎn)與其中一個(gè)頂點(diǎn)構(gòu)成一個(gè)斜邊長(zhǎng)為4的等腰直角三角形.

          (1)求橢圓C的標(biāo)準(zhǔn)方程;

          (2)設(shè)動(dòng)直線l交橢圓CP,Q兩點(diǎn),直線OP,OQ的斜率分別為k,k.,求證OPQ的面積為定值,并求此定值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案