【題目】已知關(guān)于不等式
.
(1)若該不等式的解集為空集,求函數(shù)的最大值;
(2)若,該不等式能成立,求實(shí)數(shù)
的取值范圍.
【答案】(1);(2)
.
【解析】
(1)由關(guān)于不等式
的解集為空集,可得
,然后求
的最大值即可;
(2)當(dāng),該不等式能成立等價(jià)于
在
有解,再結(jié)合二次函數(shù)的對稱軸討論即可得解.
解:(1)由關(guān)于不等式
的解集為空集,
則,解得
,
則,
設(shè)
則,
則,當(dāng)且僅當(dāng)
,即
,即
時(shí)取等號,
即函數(shù)的最大值為
,
故函數(shù)的最大值為
;
(2)當(dāng),該不等式能成立,即
在
有解,
設(shè),二次函數(shù)
的圖象開口向上,對稱軸為直線
.
①當(dāng)時(shí),則有
,即
,
解得或
,不合乎題意;
②當(dāng)時(shí),二次函數(shù)
在區(qū)間
上單調(diào)遞增,則
,解得
,此時(shí),
;
③當(dāng)時(shí),二次函數(shù)
在區(qū)間
上單調(diào)遞減,由于
,
此時(shí),不合乎題意.
綜上所述,實(shí)數(shù)的取值范圍為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的奇函數(shù)
和偶函數(shù)
滿足:
,下列結(jié)論正確的有( )
A.,且
B.,總有
C.,總有
D.,使得
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓(
)的右焦點(diǎn)為
,右頂點(diǎn)為
,已知
,其中
為原點(diǎn),
為橢圓的離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過點(diǎn)的直線
與橢圓交于點(diǎn)
(
不在
軸上),垂直于
的直線與
交于點(diǎn)
,與
軸交于點(diǎn)
,若
,且
,求直線的
斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求出函數(shù)的定義域;
(2)若當(dāng)時(shí),
在
上恒正,求出
的取值范圍;
(3)若函數(shù)在
上單調(diào)遞增,求出
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集U=R
(1)求A∪B;
(2)若,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
為常數(shù).
(1)當(dāng)時(shí),討論
的單調(diào)性;
(2)當(dāng)時(shí),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校研究性學(xué)習(xí)小組從汽車市場上隨機(jī)抽取輛純電動(dòng)汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于
公里和
公里之間,將統(tǒng)計(jì)結(jié)果分成
組:
,
,
,
,
,繪制成如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)求續(xù)駛里程在的車輛數(shù);
(3)若從續(xù)駛里程在的車輛中隨機(jī)抽取
輛車,求其中恰有一輛車的續(xù)駛里程在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二年級800名學(xué)生參加了地理學(xué)科考試,現(xiàn)從中隨機(jī)選取了40名學(xué)生的成績作為樣本,已知這40名學(xué)生的成績?nèi)吭?/span>40分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組;第二組
;……;第六組
,并據(jù)此繪制了如圖所示的頻率分布直方圖.
(1)求每個(gè)學(xué)生的成績被抽中的概率;
(2)估計(jì)這次考試地理成績的平均分和中位數(shù);
(3)估計(jì)這次地理考試全年級80分以上的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,底面
為矩形, 且側(cè)面
平面
,側(cè)面
平面
,
為正三角形,
(1)求證:;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com