日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)

          1)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);

          2)若函數(shù)處取得極值,且對恒成立,求實數(shù)的取值范圍;

          3)當(dāng)時,試比較的大。

          【答案】(1)當(dāng)時, 上沒有極值點,當(dāng)時, 上有一個極值點;(2;(3)證明見解析.

          【解析】試題分析: (1),當(dāng)時, 上恒成立,函數(shù)單調(diào)遞減 上沒有極值點;當(dāng)時, 處有極小值當(dāng)時, 上沒有極值點,當(dāng)時, 上有一個極值點;(2)由函數(shù)處取得極值

          上遞減,在上遞增

          ;(3)令,由(2)可知上單調(diào)遞減,則上單調(diào)遞減當(dāng)時, ,當(dāng)時,

          試題解析:(1),x>0

          當(dāng)時, 上恒成立,函數(shù)單調(diào)遞減,

          上沒有極值點;

          當(dāng)時, ,

          上遞減,在上遞增,即處有極小值.

          ∴當(dāng)時, 上沒有極值點,

          當(dāng)時, 上有一個極值點.

          (2)∵函數(shù)處取得極值,∴,∴,

          ,可得上遞減,在上遞增,

          ,即

          (3)令,

          由(2)可知上單調(diào)遞減,則上單調(diào)遞減,

          ∴當(dāng)時, ,即;

          當(dāng)時, ,∴,當(dāng)時, ,

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)其中.

          當(dāng)時,若在其定義域內(nèi)為單調(diào)函數(shù),求的取值范圍;

          當(dāng)時,是否存在實數(shù),使得當(dāng)時,不等式恒成立,如果存在,求的取值范圍,如果不存在,說明理由其中是自然對數(shù)的底數(shù),=2.71828.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中,是自然對數(shù)的底數(shù).

          (1)求曲線處的切線方程為,求實數(shù)的值;

          (2)函數(shù)既有極大值又有極小值,求實數(shù)的取值范圍

          ,對一切正實數(shù)恒成立,求實數(shù)的取值范圍(用表示).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為等差數(shù)列,且,.

          (1)求的通項公式;

          (2)若等比數(shù)列滿足,求的前項和公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知的左、右焦點分別為,點在橢圓上,,且的面積為4.

          (1)求橢圓的方程;

          (2)點是橢圓上任意一點,分別是橢圓的左、右頂點,直線與直線分別交于兩點,試證:以為直徑的圓交軸于定點,并求該定點的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù).

          (1)求的單調(diào)區(qū)間和極值;

          (2)證明:若存在零點,則在區(qū)間上僅有一個零點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為

          )求滿足的概率;

          )設(shè)三條線段的長分別為5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù), 表示導(dǎo)函數(shù).

          (1)當(dāng)時,求函數(shù)在點處的切線方程;

          (2)討論函數(shù)的單調(diào)區(qū)間;

          (3)對于曲線上的不同兩點,求證:存在唯一的,使直線的斜率等于.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直三棱柱中,,為棱上一點,,為線段上一點,.

          )證明:平面;

          )若,求四棱錐的體積.

          查看答案和解析>>

          同步練習(xí)冊答案