日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=lnx-x2+ax(其中無(wú)理數(shù)e=2.71828…,a∈R).
          (I)若函數(shù)f(x)的圖象在x=
          1
          2
          處的切線與直線y=2x平行,求實(shí)數(shù)a的值,并求此時(shí)函數(shù)f(x)的值域;
          (Ⅱ)證明:?λ∈(0,1),?x1,x2∈(0,+∞),f(λx1+(1-λ)x2)≥λf(x1)+(1-λ)f(x2);
          (Ⅲ)設(shè)g(x)=xe1-x,若對(duì)于任意給定的x0∈(0,e],方程 f(x)+1=g(x0)在(0,e]內(nèi)有兩個(gè)不同的根,求實(shí)數(shù)a的取值范圍.
          考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
          專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
          分析:(I)利用導(dǎo)數(shù)的幾何意義,求出實(shí)數(shù)a的值,確定函數(shù)的單調(diào)性,可求函數(shù)f(x)的值域;
          (Ⅱ)利用分析法進(jìn)行證明,證明(1):[λx1+(1-λ)x2]2+[λx12+(1-λ)x22]=λ(1-λ)(x1-x22≥0;(2):ln[(λx1+(1-λ)x2)]-[λlnx1+(1-λ)lnx2]=ln
          λ(
          x1
          x2
          )+(1-λ)
          (
          x1
          x2
          )λ
          ≥0即可;
          (Ⅲ)求出函數(shù)g(x)在(0,e]上的值域?yàn)椋?,1],令F(x)=f(x)+1,F(xiàn)′(x)=0在(0,e)有解,且易知只能有一個(gè)解,利用F(x)max=F(x0)>1,分離參數(shù),即可得出結(jié)論.
          解答: (Ⅰ)解:∵f(x)=lnx-x2+ax,
          ∴f′(x)=
          1
          x
          -2x+a,…(1分)
          ∵函數(shù)f(x)的圖象在x=
          1
          2
          處的切線與直線y=2x平行,
          ∴f′(
          1
          2
          )=2,
          解得a=1.     …(2分)
          此時(shí)f(x)=lnx-x2+x,f′(x)=
          (2x+1)(x-1)
          x

          當(dāng)x∈(0,1)時(shí),f′(x)>0,f(x)為增函數(shù);當(dāng)x∈(1,+∞)時(shí),f′(x)<0,f(x)為減函數(shù).
          由此可知,當(dāng)x=1時(shí)f(x)取得極大值0(同時(shí)也是最大值).
          ∴函數(shù)f(x)的值域?yàn)椋?∞,0].…(3分)
          (Ⅱ)證明:要證:?λ∈(0,1),?x1,x2∈(0,+∞),f(λx1+(1-λ)x2)≥λf(x1)+(1-λ)f(x2),
          只需要證明ln[(λx1+(1-λ)x2)]-[λx1+(1-λ)x2]2+a[λx1+(1-λ)x2]≥λ[lnx1-x12+ax1]+(1-λ)[lnx2-x22+ax2]即可.
          也就是要證明ln[(λx1+(1-λ)x2)]-[λlnx1+(1-λ)lnx2]-[λx1+(1-λ)x2]2+[λx12+(1-λ)x22]≥0
          ∵(1):[λx1+(1-λ)x2]2+[λx12+(1-λ)x22]=λ(1-λ)(x1-x22≥0;                  …(5分)
          (2):ln[(λx1+(1-λ)x2)]-[λlnx1+(1-λ)lnx2]=ln
          λ(
          x1
          x2
          )+(1-λ)
          (
          x1
          x2
          )λ

          下面證明
          λ(
          x1
          x2
          )+(1-λ)
          (
          x1
          x2
          )λ
          ≥1,即要證明λ(
          x1
          x2
          )+(1-λ)≥(
          x1
          x2
          λ,
          不妨設(shè)0<x1≤x2,令t=
          x1
          x2
          ,h(t)=λt-tλ+(1-λ)(0<t≤1)
          ∴h′(t)=λ(1-tλ-1),
          ∵0<t≤1,0<λ<1,
          ∴h′(t)≤0,僅當(dāng)t=1時(shí)h′(t)=0,
          ∴h(t)在(0,1]上是減函數(shù),
          ∴h(t)≥h(1)=0,即ln[(λx1+(1-λ)x2)]-[λlnx1+(1-λ)lnx2]≥0.
          結(jié)合(1),(2)可知(1)+(2)≥0,因此f(λx1+(1-λ)x2)≥λf(x1)+(1-λ)f(x2);…(8分)
          (Ⅲ)解:g′(x)=e1-x-xe1-x=(1-x)e1-x
          當(dāng)x∈(0,1)時(shí),g′(x)>0,函數(shù)g(x)單調(diào)遞增;
          當(dāng)x∈(1,e]時(shí),g′(x)<0,函數(shù)g(x)單調(diào)遞減.
          ∵g(0)=0,g(1)=1,g(e)=e•e1-e>0
          ∴函數(shù)g(x)在(0,e]上的值域?yàn)椋?,1].…(9分)
          令F(x)=f(x)+1,F(xiàn)′(x)=-
          2x2-ax-1
          x
          ,
          若F′(x)=0在(0,e]無(wú)解,則F(x)在(0,e]上是單調(diào)函數(shù),不合題意;
          ∴F′(x)=0在(0,e)有解,且易知只能有一個(gè)解.  …(10分)
          設(shè)其解為x0,當(dāng)x∈(0,x0)時(shí)F′(x)>0,F(xiàn)(x)在(0,x0)上是增函數(shù);
          當(dāng)x∈(x0,e)時(shí)F′(x)<0,F(xiàn)(x)在(x0,e)上是減函數(shù).
          ∵?x0∈(0,e],方程f(x)+1=g(x0)在(0,e]內(nèi)有兩個(gè)不同的根,
          ∴F(x)max=F(x0)>1,且F(e)≤0.
          由F(e)≤0,即lne-e2+ae+1≤0,解得a≤e-
          2
          e
          .    …(11分)
          由F(x)max=F(x0)>1,即lnx0-
          x
          2
          0
          +ax0>0

          2x02-ax0-1=0,∴a=2x0-
          1
          x0
          ,
          代入lnx0-
          x
          2
          0
          +ax0>0
          ,得lnx0+x02-1>0.
          設(shè)m(x)=lnx+x2-1,m′(x)=
          1
          x
          +2x>0
          ,∴m(x)在(0,e)上是增函數(shù),
          而m(1)=0,由lnx0+x02-1>0可得m(x0)>m(1),
          得1<x0<e. …(12分)
          由a=2x0-
          1
          x0
          是增函數(shù),得1<a<2e-
          1
          e
          .       …(13分)
          綜上所述1<a≤e-
          2
          e
          .…(14分)
          點(diǎn)評(píng):本題主要考查了學(xué)生會(huì)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的單調(diào)性,會(huì)根據(jù)函數(shù)的增減性求出閉區(qū)間上函數(shù)的最值,能夠判斷不等式恒成立時(shí)所滿足的條件.難度大
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知{a1,a2,a3,a4,a5}?{1,2,3,4,5,6},若a2>a1,a2>a3,a4>a3,a4>a5稱排列a1a2a3a4a5為好排列,則好排列的個(gè)數(shù)為( 。
          A、20B、72C、96D、120

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          “x<0”是“l(fā)n(x+1)<0”的(  )
          A、充分不必要條件
          B、必要不充分條件
          C、充分必要條件
          D、既不充分也不必要條件

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          甲、乙兩名工人生產(chǎn)的零件尺寸記成如圖所示的莖葉圖,已知零件尺寸在區(qū)間[165,180]內(nèi)的為合格品.(單位:mm)
          (1)求甲生產(chǎn)的零件尺寸的平均值,乙生產(chǎn)的零件尺寸的中位數(shù);
          (2)在乙生產(chǎn)的合格零件中任取2件,求至少有一件零件尺寸在中位數(shù)以上的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知拋物線y2=2px(p>0)的焦點(diǎn)過(guò)F,過(guò)H(-
          p
          2
          ,0)引直線l交此拋物線于A,B兩點(diǎn).
          (1)若直線AF的斜率為2,求直線BF的斜率;
          (2)若p=2,點(diǎn)M在拋物線上,且
          FA
          +
          FB
          =t
          FM
          ,求t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)△ABC是銳角三角形,a、b、c分別是內(nèi)角A、B、C所對(duì)邊長(zhǎng),并且(sinA+sinB)(sinA-sinB)=sin(
          π
          3
          +B)•sin(
          π
          3
          -B).
          (Ⅰ)求角A的值;
          (Ⅱ)若△ABC的面積等于6
          3
          ,a=2
          7
          ,求b、c(其中b<c).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=lnx+a(2-x)
          (Ⅰ)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為l,若l與圓(x-3)2+y2=1相切,求a的值;
          (Ⅱ)討論函數(shù)f(x)的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知圓G:x2+y2-2
          2
          x-2y=0經(jīng)過(guò)橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的右焦點(diǎn)及上頂點(diǎn).過(guò)橢圓外一點(diǎn)M(m,0)(m>a),傾斜角為
          2
          3
          π的直線l交橢圓于C,D兩點(diǎn),若點(diǎn)N(3,0)在以線段CD為直徑的圓E的外部,則m的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          己知x>0,y>0,且x+y+
          1
          x
          +
          1
          y
          =5,則x+y的最大值是
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案