日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,bc,且cosA=,cosB=.

          1)求sinC的值;

          2)若a-b=4-2,求△ABC的面積.

          【答案】12

          【解析】

          1)利用同角三角函數(shù)的基本關(guān)系可得sinA=,sinB=,再由在三角形中sinC=sinA+B),利用兩角和的正弦公式即可求解.

          2)利用正弦定理由(1)可得,求出,再利用三角形的面積公式即可求解.

          解:(1)∵在△ABC中,cosA=cosB=,

          ∴角AB為銳角,∴sinA=,sinB=.

          sinC=sinA+B=sinAcosB+cosAsinB=×+×=.

          2)由正弦定理知:,由(1)得

          a-b=4-2,b-b=4-2,∴

          故△ABC的面積S=absinC=.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,對(duì)稱軸為直線的拋物線軸交于兩點(diǎn),其中點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),作直線.

          1)求拋物線的解析式;

          2)如圖,點(diǎn)是直線下方拋物線上的一個(gè)動(dòng)點(diǎn),連結(jié).當(dāng)面積最大時(shí),求點(diǎn)的坐標(biāo);

          3)如圖,在(2)的條件下,過點(diǎn)作于點(diǎn)軸于點(diǎn)繞點(diǎn)旋轉(zhuǎn)得到在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)或點(diǎn)落在軸上(不與點(diǎn)重合)時(shí),將沿射線平移得到,在平移過程中,平面內(nèi)是否存在點(diǎn)使得四邊形是菱形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】記焦點(diǎn)在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點(diǎn)為頂點(diǎn)作相似橢圓.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),且與橢圓僅有一個(gè)公共點(diǎn),試判斷的面積是否為定值(為坐標(biāo)原點(diǎn))?若是,求出該定值;若不是,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一種密碼鎖的密碼設(shè)置是在正邊形的每個(gè)頂點(diǎn)處賦值0和1兩個(gè)數(shù)中的一個(gè),同時(shí),在每個(gè)頂點(diǎn)處染紅、藍(lán)兩種顏色之一,使得任意相鄰的兩個(gè)頂點(diǎn)的數(shù)字或顏色中至少有一個(gè)相同.問:該種密碼鎖共有多少種不同的密碼設(shè)置?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】焦距為的橢圓(),如果滿足“”,則稱此橢圓為“等差橢圓”.

          1)如果橢圓()是“等差橢圓”,求的值;

          2)如果橢圓 ()是“等差橢圓”,過作直線與此“等差橢圓”只有一個(gè)公共點(diǎn),求此直線的斜率;

          3)橢圓()是“等差橢圓”,如果焦距為12,求此“等差橢圓”的方程;

          4)對(duì)于焦距為12的“等差橢圓”,點(diǎn)為橢圓短軸的上頂點(diǎn),為橢圓上異于點(diǎn)的任一點(diǎn),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)(也異于),直線分別與軸交于兩點(diǎn),判斷以線段為直徑的圓是否過定點(diǎn)?說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市居民自來水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過4噸時(shí),每噸為1.80元,當(dāng)用水超過4噸時(shí),超過部分每噸3.00元,某月甲、乙兩戶共交水費(fèi)y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.

          (1)y關(guān)于x的函數(shù);

          (2)若甲、乙兩戶該月共交水費(fèi)26.4元,分別求出甲、乙兩戶該月的用水量和水費(fèi).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-5:不等式選講

          設(shè)函數(shù).

          (Ⅰ)求的最小值及取得最小值時(shí)的取值范圍;

          (Ⅱ)若集合,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知從境外回國(guó)的8位同胞中有1位被新冠肺炎病毒感染,需要通過核酸檢測(cè)是否呈陽(yáng)性來確定是否被感染.下面是兩種檢測(cè)方案:

          方案一:逐個(gè)檢測(cè),直到能確定被感染者為止.

          方案二:將8位同胞平均分為2組,將每組成員的核酸混合在一起后隨機(jī)抽取一組進(jìn)行檢測(cè),若檢測(cè)呈陽(yáng)性,則表明被感染者在這4位當(dāng)中,然后逐個(gè)檢測(cè),直到確定被感染者為止;若檢測(cè)呈陰性,則在另外一組中逐個(gè)進(jìn)行檢測(cè),直到確定被感染者為止.

          1)根據(jù)方案一,求檢測(cè)次數(shù)不多于兩次的概率;

          2)若每次核酸檢測(cè)費(fèi)用都是100元,設(shè)方案二所需檢測(cè)費(fèi)用為,求的分布列與數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

          在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

          (1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;

          (2)已知點(diǎn)是曲線上的動(dòng)點(diǎn),求點(diǎn)到曲線的最小距離.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案