日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,梯形中, 中點.將沿翻折到的位置,如圖2.

          )求證:平面平面;

          )求直線與平面所成角的正弦值;

          )設(shè)分別為的中點,試比較三棱錐和三棱錐(圖中未畫出)的體積大小,并說明理由.

          【答案】證明見解析;( ;(Ⅲ)體積相等.

          【解析】試題分析:由題意,利用線面垂直的判定定理,證得平面,再利用面面垂直的判定定理,即可證得,所以平面 平面.

          根據(jù)題設(shè)中的垂直關(guān)系,建立空間直角坐標系,求出平面和平面的各自一個法向量,利用向量所成的角,即可求解線面角的正弦值.

          方法一先證得平面,可得點到平面的距離相等,即可得到三棱錐同底等高,所以體積相等;

          方法二:取中點,連接, , ,分別得到, ,進而證得平面,即可點、到平面的距離相等所以三棱錐同底等高,所以體積相等;

          試題解析:

          證明:因為, , , 平面

          所以平面因為平面,所以平面 平面

          解:在平面內(nèi)作,

          平面,建系如圖.

          , , . ,

          設(shè)平面的法向量為,

          ,,, ,

          所以是平面的一個方向量.

          所以與平面所成角的正弦值為.

          Ⅲ)解三棱錐和三棱錐的體積相等.

          理由如:

          方法一:由, ,

          因為平面,所以平面.

          故點到平面的距離相等,有三棱錐同底等高,所以體積相等.

          方法二如圖,取中點,連接, .

          因為在, , 分別是, 的中點所以

          因為在正方形, 分別是, 的中點,所以

          因為, 平面, , 平面

          所以平面 平面

          因為平面,所以平面

          故點到平面的距離相等,有三棱錐同底等高,所以體積相等.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分,為了解網(wǎng)絡(luò)外賣在市的普及情況, 市某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了關(guān)于網(wǎng)絡(luò)外賣的問卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進行抽樣分析,得到表格(單位:人).

          1)根據(jù)表中數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用網(wǎng)絡(luò)外賣的情況與性別有關(guān)?

          2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再從這5人中隨機選出了3人贈送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率;

          ②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機抽取10人贈送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣的人數(shù)為,的數(shù)學(xué)期望和方差.

          參考公式: ,其中.

          參考數(shù)據(jù):

          0.15

          0.10

          0.05

          0.025

          0.010

          2.072

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】狄利克雷函數(shù)是高等數(shù)學(xué)中的一個典型函數(shù),若,則稱為狄利克雷函數(shù).對于狄利克雷函數(shù),給出下面4個命題:①對任意都有;②對任意,都有;③對任意,都有, ;④對任意,都有.其中所有真命題的序號是

          A. ①④ B. ②③ C. ①②③ D. ①③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知等比數(shù)列中, , 成等差數(shù)列;數(shù)列中的前項和為, .

          (1)求數(shù)列的通項公式;

          (2)求數(shù)列的前項和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某協(xié)會對兩家服務(wù)機構(gòu)進行滿意度調(diào)查,在,兩家服務(wù)機構(gòu)提供過服務(wù)的市民中隨機抽取了人,每人分別對這兩家服務(wù)機構(gòu)進行獨立評分,滿分均為分.整理評分數(shù)據(jù),將分數(shù)以為組距分成組:,,,,得到服務(wù)機構(gòu)分數(shù)的頻數(shù)分布表,服務(wù)機構(gòu)分數(shù)的頻率分布直方圖:

          定義市民對服務(wù)機構(gòu)評價的“滿意度指數(shù)”如下:

          分數(shù)

          滿意度指數(shù)

          0

          1

          2

          (1)在抽樣的人中,求對服務(wù)機構(gòu)評價“滿意度指數(shù)”為的人數(shù);

          (2)從在,兩家服務(wù)機構(gòu)都提供過服務(wù)的市民中隨機抽取人進行調(diào)查,試估計對服務(wù)機構(gòu)評價的“滿意度指數(shù)”比對服務(wù)機構(gòu)評價的“滿意度指數(shù)”高的概率;

          (3)如果從,服務(wù)機構(gòu)中選擇一家服務(wù)機構(gòu),以滿意度出發(fā),你會選擇哪一家?說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          )求曲線在點處的切線方程;

          )求證:“”是“函數(shù)有且只有一個零點” 的充分必要條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列的各項均為正數(shù),前項和為,且.

          1)求證:數(shù)列是等差數(shù)列;

          2)設(shè),求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的首項a1=1,an+1 (n∈N*).

          (1)證明:數(shù)列是等比數(shù)列;

          (2)設(shè)bn,求數(shù)列{bn}的前n項和Sn.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校初三年級有名學(xué)生,隨機抽查了名學(xué)生,測試分鐘仰臥起坐的成績(次數(shù)),將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖.用樣本估計總體,下列結(jié)論正確的是( )

          A. 該校初三年級學(xué)生分鐘仰臥起坐的次數(shù)的中位數(shù)為

          B. 該校初三年級學(xué)生分鐘仰臥起坐的次數(shù)的眾數(shù)為

          C. 該校初三年級學(xué)生分鐘仰臥起坐的次數(shù)超過次的人數(shù)約有

          D. 該校初三年級學(xué)生分鐘仰臥起坐的次數(shù)少于次的人數(shù)約為人.

          查看答案和解析>>

          同步練習冊答案