【題目】已知等比數(shù)列中,
,
成等差數(shù)列;數(shù)列
中的前
項(xiàng)和為
,
.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前
項(xiàng)和.
【答案】(1) ,
;(2)
.
【解析】試題分析:(1)根據(jù),
成等差數(shù)列列出關(guān)于首項(xiàng)
,公比
的方程組,解得
、
的值,即可得到數(shù)列
的通項(xiàng)公式,當(dāng)
時,
,(
也適合);(2)由(1)知
根據(jù)等比數(shù)列的求和公式和裂項(xiàng)相消求和以及分組即可求出數(shù)列
的前
項(xiàng)和.
試題解析:(1)設(shè)等比數(shù)列的公比為
;
因?yàn)?/span>成等差數(shù)列,故
,
即,故
;
因?yàn)?/span>,即
.
因?yàn)?/span>,故當(dāng)
時,
.
當(dāng)時,
;
綜上所述.
(2)由(1)知;
故數(shù)列的前
項(xiàng)和為
.
【方法點(diǎn)晴】本題主要考查等差數(shù)列的通項(xiàng)與求和公式,以及裂項(xiàng)相消法求數(shù)列的和,屬于中檔題. 裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見的裂項(xiàng)技巧:(1) ;(2)
; (3)
;(4)
;此外,需注意裂項(xiàng)之后相消的過程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問題,導(dǎo)致計算結(jié)果錯誤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知底面
為平行四邊形,
,三角形
為銳角三角形,面
面
,設(shè)
為
的中點(diǎn).
求證: (1) 面
;
(2) 面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義在
上的偶函數(shù),
,都有
,且當(dāng)
時,
,若函數(shù)
(
)在區(qū)間
內(nèi)恰有三個不同零點(diǎn),則實(shí)數(shù)
的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花店每天以每枝5元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價格出售.如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進(jìn)17枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式;
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假設(shè)花店在這100天內(nèi)每天購進(jìn)17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);
②若花店一天購進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于75元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線
,以平面直角坐標(biāo)系
的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線
.
(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的
倍、2倍后得到曲線
.試寫出直線
的直角坐標(biāo)方程和曲線
的參數(shù)方程;
(2)在曲線上求一點(diǎn)
,使點(diǎn)
到直線
的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,梯形中,
為
中點(diǎn).將
沿
翻折到
的位置,如圖2.
(Ⅰ)求證:平面平面
;
(Ⅱ)求直線與平面
所成角的正弦值;
(Ⅲ)設(shè)分別為
和
的中點(diǎn),試比較三棱錐
和三棱錐
(圖中未畫出)的體積大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象過點(diǎn)
,且
.
(1)求的解析式;
設(shè)數(shù)列滿足
,求數(shù)列
的前
項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形中,
,上底
,下底
,點(diǎn)
為下底
的中點(diǎn),現(xiàn)將該梯形中的三角形
沿線段
折起,形成四棱錐
.
(1)在四棱錐中,求證:
;
(2)若平面與平面
所成二面角的平面角為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com