日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列滿足為常數(shù),
          (1)當(dāng)時(shí),求;
          (2)當(dāng)時(shí),求的值;
          (3)問:使恒成立的常數(shù)是否存在?并證明你的結(jié)論.

          (1)   (2)   (3)存在常數(shù),使恒成立.

          解析試題分析:假設(shè)題型中,先假設(shè)存在,然后在該假設(shè)下根據(jù)題中的已知條件去求值或證明,如果最后可得到數(shù)值或證明,則說明存在,否則不存在;分類討論.
          (1)當(dāng)時(shí),根據(jù)已知條件可判斷出其符合等差數(shù)列的等差中項(xiàng)公式,所以知該數(shù)列是等差數(shù)列,此時(shí)根據(jù)題中所給的該數(shù)列的前兩項(xiàng),可求出公差,進(jìn)而利用等差數(shù)列的通項(xiàng)公式,求出通項(xiàng)
          (2)該題只是給出了數(shù)列的前兩項(xiàng)和一個(gè)遞推公式,而此時(shí)如果求數(shù)列的通項(xiàng)會(huì)相當(dāng)?shù)姆爆?困難.觀察題目會(huì)發(fā)現(xiàn),要求的是當(dāng)時(shí)的第項(xiàng),項(xiàng)數(shù)很大,所以猜想該數(shù)列的各項(xiàng)之間必然有一定的規(guī)律,故不妨列出數(shù)列的若干項(xiàng)觀察規(guī)律,會(huì)發(fā)現(xiàn)該數(shù)列是一個(gè)周期為6的數(shù)列.有了初步判斷之后,可以根據(jù),找到,最終得到,從而證明開始的猜想,然后根據(jù),可以得出結(jié)論,進(jìn)而求出
          (3)首先假設(shè)存在,然后在該假設(shè)下根據(jù)題中的已知條件去求,如果最后可得到常數(shù),則說明存在,否則不存在.根據(jù)①,可得②;根據(jù)及,可得③; 將③帶入②有④,此時(shí)①④式子含有相同的項(xiàng),所以1式減④式得.分別討論
          是否成立,并最終形成結(jié)論.
          (1)當(dāng)時(shí),根據(jù)題意可知成立,顯然該式符合等差數(shù)列的等差中項(xiàng)公式,
          所以該數(shù)列是等差數(shù)列,根據(jù)題意首項(xiàng)為,公差為,
          根據(jù)差數(shù)列的通項(xiàng)公式可知
          (2)根據(jù)題意列出該數(shù)列的一些項(xiàng),如下:
          ,,,,
          ,,,,,
          ,
          我們發(fā)現(xiàn)該數(shù)列為一周期為6的數(shù)列.
          事實(shí)上,根據(jù)題意可知,,則有
          又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d3/9/rmywu1.png" style="vertical-align:middle;" />有
          將②帶入①化簡(jiǎn)得③;
          根據(jù)③式有
          所以說明該數(shù)列是周期為6的數(shù)列.
          因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1e/9/14ki13.png" style="vertical-align:middle;" />,所以
          (3)假設(shè)存在常數(shù),使恒成立.
          ①,可得②,
          ,可得
          將③帶入②有④ 
          ①式減④式得
          所以,或
          當(dāng),時(shí),數(shù)列{}為常數(shù)數(shù)列,顯然不滿足題意.
          ,于是
          即對(duì)于

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)數(shù)列的前n項(xiàng)和,數(shù)列滿足
          (1)若成等比數(shù)列,試求的值;
          (2)是否存在,使得數(shù)列中存在某項(xiàng)滿足()成等差數(shù)列?若存在,請(qǐng)指出符合題意的的個(gè)數(shù);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          數(shù)列的前項(xiàng)和為,且和1的等差中項(xiàng),等差數(shù)列滿足
          (1)求數(shù)列,的通項(xiàng)公式;
          (2)設(shè),數(shù)列的前n項(xiàng)和為,若對(duì)一切恒成立,求實(shí)數(shù)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知數(shù)列滿足,.
          (1)若為遞增數(shù)列,且成等差數(shù)列,求的值;
          (2)若,且是遞增數(shù)列,是遞減數(shù)列,求數(shù)列的通項(xiàng)公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)
          已知首項(xiàng)都是1的兩個(gè)數(shù)列),滿足.
          (1)令,求數(shù)列的通項(xiàng)公式;
          (2)若,求數(shù)列的前n項(xiàng)和

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知各項(xiàng)均不相等的等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=15,且a3+1為a1+1和a7+1的等比中項(xiàng).
          (1)求數(shù)列{an}的通項(xiàng)公式與前n項(xiàng)和Sn;
          (2)設(shè)Tn為數(shù)列{}的前n項(xiàng)和,問是否存在常數(shù)m,使Tn=m[],若存在,求m的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知等差數(shù)列滿足,數(shù)列滿足。
          (1)求數(shù)列的通項(xiàng)公式;
          (2)求數(shù)列的前項(xiàng)和;
          (3)若,求數(shù)列的前項(xiàng)和

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知數(shù)列滿足,向量.
          (1)求證數(shù)列為等差數(shù)列,并求通項(xiàng)公式;
          (2)設(shè),若對(duì)任意都有成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          給定正整數(shù),若項(xiàng)數(shù)為的數(shù)列滿足:對(duì)任意的,均有(其中),則稱數(shù)列為“Γ數(shù)列”.
          (1)判斷數(shù)列是否是“Γ數(shù)列”,并說明理由;
          (2)若為“Γ數(shù)列”,求證:對(duì)恒成立;
          (3)設(shè)是公差為的無窮項(xiàng)等差數(shù)列,若對(duì)任意的正整數(shù)
          均構(gòu)成“Γ數(shù)列”,求的公差

          查看答案和解析>>