日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分12分)
          如圖,三棱柱中,側(cè)面為菱形,.

          (Ⅰ)證明:;
          (Ⅱ)若,,,求二面角的余弦值.
          (Ⅰ)詳見解析;(Ⅱ)

          試題分析:(Ⅰ)由側(cè)面為菱形得,結(jié)合平面,故,且的中點(diǎn).故垂直平分線段,則;(Ⅱ)求二面角大小,可考慮借助空間直角坐標(biāo)系.故結(jié)合已知條件尋找三條兩兩垂直相交的直線是解題關(guān)鍵.當(dāng)時(shí),三角形為等腰直角三角形,故,結(jié)合已知條件可判斷,故,從而兩兩垂直.故以為坐標(biāo)原點(diǎn),的方向?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053910074266.png" style="vertical-align:middle;" />軸正方向建立空間直角坐標(biāo)系,用坐標(biāo)表示相關(guān)點(diǎn)的坐標(biāo).分別求半平面的法向量,將求二面角問題轉(zhuǎn)化為求法向量夾角處理.
          試題解析:(I)連接,交,連接.因?yàn)閭?cè)面為菱形,所以,且的中點(diǎn).又,所以平面,故.又,故
          (II)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053909591580.png" style="vertical-align:middle;" />,且的中點(diǎn),所以,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053909638526.png" style="vertical-align:middle;" />,.故,從而兩兩垂直.以為坐標(biāo)原點(diǎn),的方向?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053910074266.png" style="vertical-align:middle;" />軸正方向,為單位長,建立如圖所示的空間直角坐標(biāo)系.因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053910698707.png" style="vertical-align:middle;" />,所以為等邊三角形.又,則,,
          ,,
          設(shè)是平面的法向量,則所以可取
          設(shè)是平面的法向量,則同理可取
          .所以二面角的余弦值為

          【考點(diǎn)定位】1、直線和平面垂直的判定和性質(zhì);2、二面角求法.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知四棱錐的底面為直角梯形,底面,且,,的中點(diǎn).

          (1)證明:面
          (2)求所成的角的余弦值;
          (3)求二面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,四棱錐中,,底面為梯形,,且.(10分)

          (1)求證:;
          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,三棱柱中,側(cè)面為菱形,的中點(diǎn)為,且平面.

          證明:
          ,求三棱柱的高.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)
          在平行四邊形中,,.將沿折起,使得平面平面,如圖.

          (1)求證: ;
          (2)若中點(diǎn),求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示的多面體是由底面為的長方體被截面所截而得到的,其中
          (1)求;
          (2)求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          下列四個(gè)命題中,正確命題的個(gè)數(shù)是(    )個(gè)
          ① 若平面平面,直線平面,則;
          ② 若平面平面,且平面平面,則
          ③平面平面,且,點(diǎn),,若直線,則;
          ④直線為異面直線,且平面,平面,若,則.
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          [2012·安徽高考]設(shè)平面α與平面β相交于直線m,直線a在平面α內(nèi),直線b在平面β內(nèi),且b⊥m,則“α⊥β”是“a⊥b”的(  )
          A.充分不必要條件
          B.必要不充分條件
          C.充分必要條件
          D.既不充分也不必要條件

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          (2013•浙江)在空間中,過點(diǎn)A作平面π的垂線,垂足為B,記B=fπ(A).設(shè)α,β是兩個(gè)不同的平面,對(duì)空間任意一點(diǎn)P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,則( 。
          A.平面α與平面β垂直
          B.平面α與平面β所成的(銳)二面角為45°
          C.平面α與平面β平行
          D.平面α與平面β所成的(銳)二面角為60°

          查看答案和解析>>

          同步練習(xí)冊(cè)答案