【題目】如圖,在棱長為2的正方體中,
,
,
,
分別是棱
,
,
,
的中點(diǎn),點(diǎn)
,
分別在棱
,
上移動,且
.
(1)當(dāng)時,證明:直線
平面
;
(2)是否存在,使面
與面
所成的二面角為直二面角?若存在,求出
的值;若不存在,說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若無窮數(shù)列滿足:
恒等于常數(shù)
,則稱
具有局部等差數(shù)列
.
(1)若具有局部等差數(shù)列
,且
,求
;
(2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列
是公比為正數(shù)的等比數(shù)列,
,
,
,判斷
是否具有局部等差數(shù)列
,并說明理由;
(3)設(shè)既具有局部等差數(shù)列
,又具有局部等差數(shù)列
,求證:
具有局部等差數(shù)列
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,將函數(shù)
圖象向下平移
個單位得到
的圖象,則
(Ⅰ)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)求在區(qū)間
上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高三年級從甲、乙兩個班級各選出7名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖,其中甲班學(xué)生成績的平均分是85,乙班學(xué)生成績的中位數(shù)是89.
(1)求和
的值;
(2)計算乙班7位學(xué)生成績的方差.
(3)從成績在90分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求乙班至少有一名學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為直角坐標(biāo)系的坐標(biāo)原點(diǎn),雙曲線
上有一點(diǎn)
(
),點(diǎn)
在
軸上的射影恰好是雙曲線
的右焦點(diǎn),過點(diǎn)
作雙曲線
兩條漸近線的平行線,與兩條漸近線的交點(diǎn)分別為
,
,若平行四邊形
的面積為1,則雙曲線的標(biāo)準(zhǔn)方程是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于回歸分析的說法中錯誤的是( )
A. 回歸直線一定過樣本中心
B. 殘差圖中殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適
C. 兩個模型中殘差平方和越小的模型擬合的效果越好
D. 甲、乙兩個模型的分別約為0.98和0.80,則模型乙的擬合效果更好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C為△ABC的三個內(nèi)角,且其對邊分別為a、b、c,若cosBcosC﹣sinBsinC= .
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com