【題目】某中學(xué)高三年級從甲、乙兩個(gè)班級各選出7名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖,其中甲班學(xué)生成績的平均分是85,乙班學(xué)生成績的中位數(shù)是89.
(1)求和
的值;
(2)計(jì)算乙班7位學(xué)生成績的方差.
(3)從成績在90分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求乙班至少有一名學(xué)生的概率.
【答案】(1)x=5,y=3;(2)40;(3)
【解析】試題分析:(1)根據(jù)平均數(shù)計(jì)算公式可求,中位數(shù)是指將一組數(shù)據(jù)按照從小到大或者從大到小的順序排成一列,如果是奇數(shù)個(gè)數(shù),中位數(shù)是最中間的數(shù);如果是偶數(shù)個(gè)數(shù),中位數(shù)是最中間兩個(gè)數(shù)的平均數(shù),由題知
;(2)甲班七名學(xué)生成績已知,代入方差計(jì)算公式即可;(3)記事件
=“從中抽取兩名學(xué)生,甲班至少有一名學(xué)生”,把成績在90分以上的學(xué)生編號,列出從中抽取兩名學(xué)生的基本事件總數(shù)以及事件
包含的基本事件總數(shù),代入古典概型的概率計(jì)算公式可求;至少、至多問題的概率還可以根據(jù)對立事件的概率來求,即
.
試題解析:(1)由=85,得
,所以
=5,將數(shù)字按照從小到大的順序排列,第四個(gè)數(shù)字是中位數(shù),所以
;
(2)=40;
(3)成績在90分以上的學(xué)生共有5名,其中甲班有兩名,記為a,b,乙班3名,記為1,2,3,從中任取兩名,基本事件為有,
,
,
,共10個(gè),記事件
=“從中抽取兩名學(xué)生,甲班至少有一名學(xué)生”,則事件
包含的基本事件有
,
,
,共7個(gè),所以
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)若不等式對
恒成立,求
的值;
(2)若在
內(nèi)有兩個(gè)極值點(diǎn),求負(fù)數(shù)
的取值范圍;
(3)已知,若對任意實(shí)數(shù)
,總存在實(shí)數(shù)
,使得
成立,求正實(shí)數(shù)
的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2n﹣1.?dāng)?shù)列{bn}滿足b1=2,bn+1﹣2bn=8an .
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)證明:數(shù)列{ }為等差數(shù)列,并求{bn}的通項(xiàng)公式.
(3)求{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家父母記錄了女兒玥玥的年齡(歲)和身高(單位cm)的數(shù)據(jù)如下:
年齡x | 6 | 7 | 8 | 9 |
身高y | 118 | 126 | 136 | 144 |
(1)試求y關(guān)于x的線性回歸方程 =
x+
(2)試預(yù)測玥玥10歲時(shí)的身高.(其中, =
,
=
﹣
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù){an}:a1=t,n2Sn+1=n2(Sn+an)+an2 , n=1,2,….
(1)設(shè){an}為等差數(shù)列,且前兩項(xiàng)和S2=3,求t的值;
(2)若t= ,證明:
≤an<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為2的正方體中,
,
,
,
分別是棱
,
,
,
的中點(diǎn),點(diǎn)
,
分別在棱
,
上移動(dòng),且
.
(1)當(dāng)時(shí),證明:直線
平面
;
(2)是否存在,使面
與面
所成的二面角為直二面角?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了普及環(huán)保知識,增強(qiáng)環(huán)保意識,某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識測試.
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計(jì) | |
甲班 | |||
乙班 | 30 | ||
總計(jì) | 60 |
(Ⅰ)根據(jù)題目完成列聯(lián)表,并據(jù)此判斷是否有
的把握認(rèn)為環(huán)保知識成績優(yōu)秀與學(xué)生的文理分類有關(guān).
(Ⅱ)現(xiàn)已知,
,
三人獲得優(yōu)秀的概率分別為
,
,
,設(shè)隨機(jī)變量
表示
,
,
三人中獲得優(yōu)秀的人數(shù),求
的分布列及期望
.
附: ,
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 若4Sn=(2n﹣1)an+1+1,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn= ,數(shù)列{cn}的前n項(xiàng)和為Tn .
①求Tn;
②對于任意的n∈N*及x∈R,不等式kx2﹣6kx+k+7+3Tn>0恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com