日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:(ab>0)的左、右頂點(diǎn)分別為A1(﹣2,0),A2(2,0),右準(zhǔn)線方程為x=4.過點(diǎn)A1的直線交橢圓C于x軸上方的點(diǎn)P,交橢圓C的右準(zhǔn)線于點(diǎn)D.直線A2D與橢圓C的另一交點(diǎn)為G,直線OG與直線A1D交于點(diǎn)H.

          (1)求橢圓C的標(biāo)準(zhǔn)方程;

          (2)若HG⊥A1D,試求直線A1D的方程;

          (3)如果,試求的取值范圍.

          【答案】(1);(2);(3)

          【解析】

          1)由題可得:,利用橢圓準(zhǔn)線方程可得,即可求得,問題得解。

          2)設(shè),即可表示直線的方程為:,聯(lián)立直線與橢圓方程可求得,即可求得,由HG⊥A1D可列方程,整理得:,結(jié)合即可求得,從而求得,問題得解。

          3)設(shè),,,,表示出直線的方程為:,直線的方程為:,將直線方程分別與橢圓方程聯(lián)立,即可求得,,聯(lián)立直線的方程與直線的方程即可求得,即可表示出,,利用列方程可得:,即可表示出,結(jié)合即可求得,問題得解。

          1)由題可得:,又橢圓右準(zhǔn)線方程為=4,

          所以,解得:,又,解得:

          所以橢圓C的標(biāo)準(zhǔn)方程為:.

          2)設(shè),

          所以直線的方程為:

          聯(lián)立直線的方程與準(zhǔn)線方程可得:

          整理得:,所以,

          所以.

          又HG⊥A1D,所以,即:

          聯(lián)立可得:.

          所以.

          所以直線的方程為:.

          3)設(shè),,,,其中

          直線的方程為:

          聯(lián)立橢圓方程可得:,解得

          直線的方程為:

          聯(lián)立橢圓方程可得:,解得

          所以直線的方程為:

          聯(lián)立直線的方程與直線的方程可得:,

          解得:

          所以,

          ,所以

          所以

          整理得:

          因?yàn)?/span>,所以,整理得:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某企業(yè)為了檢查甲、乙兩條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取100件產(chǎn)品作為樣本稱出它們的質(zhì)量(單位:毫克),質(zhì)量值落在的產(chǎn)品為合格品,否則為不合格品.如表是甲流水線樣本頻數(shù)分布表,如圖是乙流水線樣本的頻率分布直方圖.

          產(chǎn)品質(zhì)量/毫克

          頻數(shù)

          165175]

          3

          175,185]

          2

          185,195]

          21

          195205]

          36

          205,215]

          24

          215,225]

          9

          225,235]

          5

          (Ⅰ)根據(jù)乙流水線樣本的頻率分布直方圖,求乙流水線樣本質(zhì)量的中位數(shù)(結(jié)果保留整數(shù));

          (Ⅱ)從甲流水線樣本中質(zhì)量在的產(chǎn)品中任取2件產(chǎn)品,求兩件產(chǎn)品中恰有一件合格品的概率;

          甲流水線

          乙流水線

          總計(jì)

          合格品

          不合格品

          總計(jì)

          (Ⅲ)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面2×2列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為產(chǎn)品的包裝合格與兩條自動(dòng)包裝流水線的選擇有關(guān)?

          下面臨界值表僅供參考:

          PK2k

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          k

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          參考公式:,其中na+b+c+d

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知從1開始的連續(xù)奇數(shù)蛇形排列形成寶塔形數(shù)表,第一行為1,第二行為3,5,第三行為7,9,11,第四行為13,15,17,19,如圖所示,在寶塔形數(shù)表中位于第行,第列的數(shù)記為,比如,,,若,則( )

          A. 72B. 71C. 66D. 65

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知過定點(diǎn)的動(dòng)圓是與圓相內(nèi)切.

          (1)求動(dòng)圓圓心的軌跡方程;

          (2)設(shè)動(dòng)圓圓心的軌跡為曲線,是曲線上的兩點(diǎn),線段的垂直平分線過點(diǎn),求面積的最大值(是坐標(biāo)原點(diǎn)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)P在曲線C:上,曲線C在點(diǎn)P處的切線為,過點(diǎn)P且與直線垂直的直線與曲線C的另一交點(diǎn)為Q,O為坐標(biāo)原點(diǎn),若OP⊥OQ,則點(diǎn)P的縱坐標(biāo)為_______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,已知拋物線C:的焦點(diǎn)為F,過F的直線交拋物線C于A,B兩點(diǎn).

          (1)求線段AF的中點(diǎn)M的軌跡方程;

          (2)已知△AOB的面積是△BOF面積的3倍,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)Q是圓上的動(dòng)點(diǎn),點(diǎn),若線段QN的垂直平分線MQ于點(diǎn)P.

          (I)求動(dòng)點(diǎn)P的軌跡E的方程

          (II)若A是軌跡E的左頂點(diǎn),過點(diǎn)D(-3,8)的直線l與軌跡E交于B,C兩點(diǎn),求證:直線AB、AC的斜率之和為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列四個(gè)命題:①任意兩條直線都可以確定一個(gè)平面;②若兩個(gè)平面有3個(gè)不同的公共點(diǎn),則這兩個(gè)平面重合;③直線a,b,c,若ab共面,bc共面,則ac共面;④若直線l上有一點(diǎn)在平面α外,則l在平面α.其中錯(cuò)誤命題的個(gè)數(shù)是( 。

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的焦點(diǎn)為,過點(diǎn)垂直于軸的直線與拋物線相交于兩點(diǎn),拋物線兩點(diǎn)處的切線及直線所圍成的三角形面積為.

          (1)求拋物線的方程;

          (2)設(shè)是拋物線上異于原點(diǎn)的兩個(gè)動(dòng)點(diǎn),且滿足,求面積的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案