【題目】經(jīng)統(tǒng)計(jì),某校學(xué)生上學(xué)路程所需要時(shí)間全部介于與
之間(單位:分鐘).現(xiàn)從在校學(xué)生中隨機(jī)抽取
人,按上學(xué)所學(xué)時(shí)間分組如下:第
組
,第
組
,第
組
,第
組
,第
組
,得打如圖所示的頻率分布直方圖.
(Ⅰ)根據(jù)圖中數(shù)據(jù)求的值.
(Ⅱ)若從第,
,
組中用分成抽樣的方法抽取
人參與交通安全問(wèn)卷調(diào)查,應(yīng)從這三組中各抽取幾人?
(Ⅲ)在(Ⅱ)的條件下,若從這人中隨機(jī)抽取
人參加交通安全宣傳活動(dòng),求第
組至少有
人被抽中的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,橢圓
的上焦點(diǎn)為
,橢圓
的離心率為
,且過(guò)點(diǎn)
.
(1)求橢圓的方程.
(2)設(shè)過(guò)橢圓的上頂點(diǎn)
的直線
與橢圓
交于點(diǎn)
(
不在
軸上),垂直于
的直線與
交于點(diǎn)
,與
軸交于點(diǎn)
,若
,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某P2P平臺(tái)需要了解該平臺(tái)投資者的大致年齡分布,發(fā)現(xiàn)其投資者年齡大多集中在區(qū)間[20,50]歲之間,對(duì)區(qū)間[20,50]歲的人群隨機(jī)抽取20人進(jìn)行了一次理財(cái)習(xí)慣調(diào)查,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組數(shù) | 分組 | 人數(shù)(單位:人) |
第一組 | [20,25) | 2 |
第二組 | [25,30) | a |
第三組 | [30,35) | 5 |
第四組 | [35,40) | 4 |
第五組 | [40,45) | 3 |
第六組 | [45,50] | 2 |
(Ⅰ)求a的值并畫出頻率分布直方圖;
(Ⅱ)在統(tǒng)計(jì)表的第五與第六組的5人中,隨機(jī)選取2人,求這2人的年齡都小于45歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:若關(guān)于
的方程
無(wú)實(shí)數(shù)根,則
;命題
:若關(guān)于
的方程
有兩個(gè)不相等的正實(shí)數(shù)根,則
.
(1)寫出命題的否命題,并判斷命題
的真假;
(2)判斷命題“且
”的真假,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
.
(I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;
(II)解關(guān)于x的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司經(jīng)營(yíng)一種二手機(jī)械,對(duì)該型號(hào)機(jī)械的使用年數(shù)與再銷售價(jià)格
(單位:百萬(wàn)元/臺(tái))進(jìn)行統(tǒng)計(jì)整理,得到如下關(guān)系:
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
再銷售價(jià)格 | 16 | 13 | 9.5 | 7 | 5 |
(1)求關(guān)于
的回歸直線方程
;
(2)該機(jī)械每臺(tái)的收購(gòu)價(jià)格為(百萬(wàn)元),根據(jù)(1)中所求的回歸方程,預(yù)測(cè)
為何值時(shí),此公司銷售一臺(tái)該型號(hào)二手機(jī)械所獲得的利潤(rùn)
最大?
附:參考公式:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某海輪以每小時(shí)30海里的速度航行,在點(diǎn)測(cè)得海面上油井
在南偏東
,海輪向北航行40分鐘后到達(dá)點(diǎn)
,測(cè)得油井
在南偏東
,海輪改為北偏東
的航向再行駛80分鐘到達(dá)點(diǎn)
,則
兩點(diǎn)的距離為(單位:海里)
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于在區(qū)間上有意義的函數(shù)
,滿足對(duì)任意的
,
,有
恒成立,厄稱
在
上是“友好”的,否則就稱
在
上是“不友好”的,現(xiàn)有函數(shù)
.
(1)若函數(shù)在區(qū)間
(
)上是“友好”的,求實(shí)數(shù)
的取值范圍;
(2)若關(guān)于的方程
的解集中有且只有一個(gè)元素,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com