日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00﹣22:00時間段的休閑方式與性別的關(guān)系,隨機調(diào)查了該社區(qū)80人,得到下面的數(shù)據(jù)表:

          休閑方式
          性別

          看電視

          看書

          合計

          10

          50

          60

          10

          10

          20

          合計

          20

          60

          80


          (1)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00﹣22:00時間段居民的休閑方式與性別有關(guān)系”?
          (2)將此樣本的頻率估計為總體的概率,隨機調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機變量X.求X的數(shù)學(xué)期望和方差.

          P(X2≥k)

          0.050

          0.010

          0.001

          k

          3.841

          6.635

          10.828

          附:X2=

          【答案】
          (1)解:根據(jù)樣本提供的2×2列聯(lián)表得:X2= ≈8.889>6.635;

          所以有99%的把握認(rèn)為“在20:00﹣22:00時間段居民的休閑方式與性別有關(guān).


          (2)解:由題意得:X~B(3, ),所以E(X)=3× = ,D(X)=3× × =
          【解析】(1)根據(jù)樣本提供的2×2列聯(lián)表,得當(dāng)H0成立時,K2≥6.635的概率約為0.01,由此能推導(dǎo)出有99%的把握認(rèn)為“在20:00﹣22:00時間段的休閑方式與性別有關(guān)系.(2)由題意得:X~B(3, ),由此能求出X的數(shù)學(xué)期望和方差.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-5:不等式選講

          已知函數(shù)

          1)求不等式的解集;

          2)若,求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點分別為,左、右頂點分別為為直徑的圓O過橢圓E的上頂點D,直線DB與圓O相交得到的弦長為.設(shè)點,連接PA交橢圓于點C.

          (I)求橢圓E的方程;

          (II)若三角形ABC的面積不大于四邊形OBPC的面積,求t的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)設(shè),試討論單調(diào)性;

          (2)設(shè),當(dāng)時,任意,存在,使,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐中,底面為平行四邊形, , , 點在底面內(nèi)的射影在線段上,且, 的中點, 在線段上,且

          (Ⅰ)當(dāng)時,證明:平面平面;

          (Ⅱ)當(dāng)平面與平面所成的二面角的正弦值為時,求四棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足Sn=2an﹣2.
          (Ⅰ)求數(shù)列{an}的通項公式;
          (Ⅱ)設(shè)函數(shù)f(x)=( x , 數(shù)列{bn}滿足條件b1=2,f(bn+1)= ,(n∈N*),若cn= ,求數(shù)列{cn}的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若不等式x2﹣ax﹣b<0的解集是{x|2<x<3},求不等式bx2﹣ax﹣1>0的解集.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點,作EF⊥PB交PB于點F.

          (1)證明 PA∥平面EDB;
          (2)證明PB⊥平面EFD;
          (3)求VBEFD

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知命題p:方程 =1表示焦點在y軸上的橢圓;命題q:雙曲線 =1的離心率e∈(1,2).若命題p、q有且只有一個為真,求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案