【題目】已知圓及直線
:
.
(1)證明:不論取什么實(shí)數(shù),直線
與圓C總相交;
(2)求直線被圓C截得的弦長的最小值及此時的直線方程.
【答案】(1)證明見解析;(2) ,
.
【解析】
(1)根據(jù)直線過的定點(diǎn)在圓內(nèi),得出直線與圓總相交.
(2)作圖分析出當(dāng)直線與半徑CM垂直與點(diǎn)M時|AB|最短,利用勾股定理求出此時|AB|的長,再運(yùn)用兩直線垂直時斜率相乘等于1,求出此時直線
的方程.
解:(1)證明:直線的方程可化為
,
由方程組,解得
所以直線過定點(diǎn)M(3,1),
圓C化為標(biāo)準(zhǔn)方程為,所以圓心坐標(biāo)為(1,2),半徑為5,
因?yàn)槎c(diǎn)M(3,1)到圓心(1,2)的距離為√,
所以定點(diǎn)M(3,1)在圓內(nèi),
故不論m取什么實(shí)數(shù),過定點(diǎn)M(3,1)的直線與圓C總相交;
(2)設(shè)直線與圓交于A、B兩點(diǎn),當(dāng)直線與半徑CM垂直與點(diǎn)M時,直線
被截得的弦長|AB|最短,
此時,
此時,所以直線AB的方程為
,即
.
故直線被圓C截得的弦長的最小值為
,此時的直線
的方程為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級學(xué)生中隨機(jī)抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段: ,
,…,
,得到如圖所示的頻率分布直方圖.
(1)求圖中實(shí)數(shù)的值;
(2)若該校高一年級共有640人,試估計該校高一年級期中考試數(shù)學(xué)成績不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績在與
兩個分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若,是否存在整數(shù)
使
對任意
成立?若存在,求出
的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題恒成立;命題
方程
表示雙曲線.
(1)若命題為真命題,求實(shí)數(shù)
的取值范圍;
(2)若命題“”為真命題,“
”為假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)前,以“立德樹人”為目標(biāo)的課程改革正在有序推進(jìn).高中聯(lián)招對初三畢業(yè)學(xué)生進(jìn)行體育測試,是激發(fā)學(xué)生、家長和學(xué)校積極開展體育活動,保證學(xué)生健康成長的有效措施.程度2019年初中畢業(yè)生升學(xué)體育考試規(guī)定,考生必須參加立定跳遠(yuǎn)、擲實(shí)心球、1分鐘跳繩三項(xiàng)測試,三項(xiàng)考試滿分50分,其中立定跳遠(yuǎn)15分,擲實(shí)心球15分,1分鐘跳繩20分.某學(xué)校在初三上期開始時要掌握全年級學(xué)生每分鐘跳繩的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測試,得到下邊頻率分布直方圖,且規(guī)定計分規(guī)則如下表:
每分鐘跳繩個數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(Ⅰ)現(xiàn)從樣本的100名學(xué)生中,任意選取2人,求兩人得分之和不大于35分的概率;;
(Ⅱ)若該校初三年級所有學(xué)生的跳繩個數(shù)服從正態(tài)分布
,用樣本數(shù)據(jù)的平均值和方差估計總體的期望和方差,已知樣本方差
(各組數(shù)據(jù)用中點(diǎn)值代替).根據(jù)往年經(jīng)驗(yàn),該校初三年級學(xué)生經(jīng)過一年的訓(xùn)練,正式測試時每人每分鐘跳繩個數(shù)都有明顯進(jìn)步,假設(shè)今年正式測試時每人每分鐘跳繩個數(shù)比初三上學(xué)期開始時個數(shù)增加10個,現(xiàn)利用所得正態(tài)分布模型:
預(yù)計全年級恰有2000名學(xué)生,正式測試每分鐘跳182個以上的人數(shù);(結(jié)果四舍五入到整數(shù))
若在全年級所有學(xué)生中任意選取3人,記正式測試時每分鐘跳195以上的人數(shù)為ξ,求隨機(jī)變量的分布列和期望.
附:若隨機(jī)變量服從正態(tài)分布
,則
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的方程為
,點(diǎn)
,點(diǎn)M為圓
上的任意一點(diǎn),線段
的垂直平分線與線段
相交于點(diǎn)N.
(1)求點(diǎn)N的軌跡C的方程.
(2)已知點(diǎn),過點(diǎn)A且斜率為k的直線
交軌跡C于
兩點(diǎn),以
為鄰邊作平行四邊形
,是否存在常數(shù)k,使得點(diǎn)B在軌跡C上,若存在,求k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:圓心到直線的距離與圓的半徑之比稱為“直線關(guān)于圓的距離比”.
(1)設(shè)圓求過點(diǎn)P
的直線關(guān)于圓
的距離比
的直線方程;
(2)若圓與
軸相切于點(diǎn)A
且直線
關(guān)于圓C的距離比
求出圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校實(shí)行選科走班制度,張毅同學(xué)的選擇是地理、生物、政治這三科,且生物在層班級.該校周一上午選科走班的課程安排如下表所示,張毅選擇三個科目的課各上一節(jié),另外一節(jié)上自習(xí),則他不同的選課方法的種數(shù)為( )
第一節(jié) | 第二節(jié) | 第三節(jié) | 第四節(jié) |
地理1班 | 化學(xué) | 地理2班 | 化學(xué) |
生物 | 化學(xué) | 生物 | 歷史 |
物理 | 生物 | 物理 | 生物 |
物理 | 生物 | 物理 | 物理 |
政治1班 | 物理A層3班 | 政治2班 | 政治3班 |
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨(dú)孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體共有________個面,其棱長為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com