【題目】已知命題恒成立;命題
方程
表示雙曲線.
(1)若命題為真命題,求實(shí)數(shù)
的取值范圍;
(2)若命題“”為真命題,“
”為假命題,求實(shí)數(shù)
的取值范圍.
【答案】(2) ;(2)
,或
.
【解析】試題分析:(1)當(dāng)命題P為真命題時(shí),轉(zhuǎn)化為求在
上的最小值,繼而求出m的范圍;(2)先求出當(dāng)命題q為真命題時(shí)m的范圍,再由已知條件得出p,q一個(gè)為真命題,一個(gè)為假命題,再分兩種情況分別求出m的范圍,最后取并集即可求出m的范圍。
試題解析:(1),∵
,∴
,故命題
為真命題時(shí),
.
(2)若命題為真命題,則
,所以
,
因?yàn)槊}為真命題,則
至少有一個(gè)真命題,
為假命題,
則至少有一個(gè)假命題,所以
一個(gè)為真命題,一個(gè)為假命題.
當(dāng)命題為真命題,命題
為假命題時(shí),
,則
,或
;
當(dāng)命題為假命題,命題
為真命題時(shí),
, 舍去.
綜上, ,或
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018江西南康中學(xué)、于都中學(xué)上學(xué)期第四次聯(lián)考】橢圓上動(dòng)點(diǎn)
到兩個(gè)焦點(diǎn)的距離之和為4,且到右焦點(diǎn)距離的最大值為
.
(I)求橢圓的方程;
(II)設(shè)點(diǎn)為橢圓的上頂點(diǎn),若直線
與橢圓
交于兩點(diǎn)
(
不是上下頂點(diǎn))
.試問:直線
是否經(jīng)過某一定點(diǎn),若是,求出該定點(diǎn)的坐標(biāo);若不是,請說明理由;
(III)在(II)的條件下,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(Ⅰ)求的最大值;
(Ⅱ)若,判斷
的單調(diào)性;
(Ⅲ)若有兩個(gè)零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓:
的左、右焦點(diǎn)分別為
,上頂點(diǎn)為
,過點(diǎn)
與
垂直的直線交
軸負(fù)半軸于點(diǎn)
,且
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若過、
、
三點(diǎn)的圓恰好與直線
:
相切,求橢圓
的方程;
(III)在(Ⅱ)的條件下,過右焦點(diǎn)作斜率為
的直線
與橢圓
交于
、
兩點(diǎn),在
軸上是否存在點(diǎn)
使得以
為鄰邊的平行四邊形是菱形,如果存在,求出
的取值范圍,如果不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,底面
為直角梯形,
平面
,側(cè)面
是等腰直角三角形,
,
,點(diǎn)
是棱
的中點(diǎn).
(1)證明:平面平面
;
(2)求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) 為橢圓
上任一點(diǎn),
,
為橢圓的焦點(diǎn),
,離心率為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線 經(jīng)過點(diǎn)
,且與橢圓交于
,
兩點(diǎn),若直線
,
,
的斜率依次成等比數(shù)列,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某禮品店要制作一批長方體包裝盒,材料是邊長為的正方形紙板.如圖所示,先在其中相鄰兩個(gè)角處各切去一個(gè)邊長是
的正方形,然后在余下兩個(gè)角處各切去一個(gè)長、寬分別為
、
的矩形,再將剩余部分沿圖中的虛線折起,做成一個(gè)有蓋的長方體包裝盒.
(1)求包裝盒的容積關(guān)于
的函數(shù)表達(dá)式,并求函數(shù)的定義域;
(2)當(dāng)為多少時(shí),包裝盒的容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在測試中,客觀題難度的計(jì)算公式為,其中
為第
題的難度,
為答對該題的人數(shù),
為參加測試的總?cè)藬?shù).現(xiàn)對某校高三年級(jí)240名學(xué)生進(jìn)行一次測試,共5道客觀題,測試前根據(jù)對學(xué)生的了解,預(yù)估了每道題的難度,如表所示:
題號(hào) | 1 | 2 | 3 | 4 | 5 |
考前預(yù)估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
測試后,從中隨機(jī)抽取了20名學(xué)生的答題數(shù)據(jù)進(jìn)行統(tǒng)計(jì),結(jié)果如表:
(Ⅰ)根據(jù)題中數(shù)據(jù),估計(jì)中240名學(xué)生中第5題的實(shí)測答對人數(shù);
(Ⅱ)從抽樣的20名學(xué)生中隨機(jī)抽取2名學(xué)生,記這2名學(xué)生中第5題答對的人數(shù)為,求
的分布列和數(shù)學(xué)期望;
(Ⅲ)試題的預(yù)估難度和實(shí)測難度之間會(huì)有偏差.設(shè)為第
題的實(shí)測難度,請用
和
設(shè)計(jì)一個(gè)統(tǒng)計(jì)量,并制定一個(gè)標(biāo)準(zhǔn)來判斷本次測試對難度的預(yù)估是否合理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,等腰的底邊
,高
,點(diǎn)
是線段
上異于點(diǎn)
的動(dòng)點(diǎn),點(diǎn)
在
邊上,且
,現(xiàn)沿
將△
折起到△
的位置,使
,記
,
表示四棱錐
的體積.
(1)求的表達(dá)式;(2)當(dāng)
為何值時(shí),
取得最大,并求最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com