【題目】定義:圓心到直線的距離與圓的半徑之比稱為“直線關(guān)于圓的距離比”.
(1)設(shè)圓求過點(diǎn)P
的直線關(guān)于圓
的距離比
的直線方程;
(2)若圓與
軸相切于點(diǎn)A
且直線
關(guān)于圓C的距離比
求出圓C的方程.
【答案】(1)或
;(2)
或
【解析】
(1)分析直線斜率不存在時(shí)不合題意;設(shè)過點(diǎn)P(﹣1,0)的直線方程為y=k(x+1),由已知圓的方程求得圓心坐標(biāo)與半徑,再由“直線關(guān)于圓的距離比”求解,則直線方程可求;
(2)設(shè)圓的方程為,由題意可得關(guān)于a,b,r的方程,聯(lián)立方程組求解a,b,r的值,則圓的方程可求.
(1)當(dāng)直線的斜率不存在時(shí),則直線方程為x=﹣1,圓心坐標(biāo)為(2,0),半徑為1,
不滿足圓心到直線的距離與圓的半徑之比為,則所求直線的斜率存在.
設(shè)過點(diǎn)的直線方程為
,由圓
的圓心為
,半徑為
,
由題意可得,解得
,
所以所求直線的方程為或
(2)設(shè)圓的方程為,
由題意可得……①,
,……②,
……③
由①②③聯(lián)立方程組,可得或
,
所以圓C的方程為或
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體的棱上(除去棱AD)到直線
與
的距離相等的點(diǎn)有
個(gè),記這
個(gè)點(diǎn)分別為
,則直線
與平面
所成角的正弦值為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某客戶考察了一款熱銷的凈水器,使用壽命為十年,改款凈水器為三級(jí)過濾,每一級(jí)過濾都由核心部件濾芯來實(shí)現(xiàn).在使用過程中,一級(jí)濾芯需要不定期更換,其中每更換個(gè)一級(jí)濾芯就需要更換
個(gè)二級(jí)濾芯,三級(jí)濾芯無需更換.其中一級(jí)濾芯每個(gè)
元,二級(jí)濾芯每個(gè)
元.記一臺(tái)凈水器在使用期內(nèi)需要更換的二級(jí)濾芯的個(gè)數(shù)構(gòu)成的集合為
.如圖是根據(jù)
臺(tái)該款凈水器在十年使用期內(nèi)更換的一級(jí)濾芯的個(gè)數(shù)制成的柱狀圖.
(1)結(jié)合圖,寫出集合;
(2)根據(jù)以上信息,求出一臺(tái)凈水器在使用期內(nèi)更換二級(jí)濾芯的費(fèi)用大于元的概率(以
臺(tái)凈水器更換二級(jí)濾芯的頻率代替
臺(tái)凈水器更換二級(jí)濾芯發(fā)生的概率);
(3)若在購(gòu)買凈水器的同時(shí)購(gòu)買濾芯,則濾芯可享受折優(yōu)惠(使用過程中如需再購(gòu)買無優(yōu)惠).假設(shè)上述
臺(tái)凈水器在購(gòu)機(jī)的同時(shí),每臺(tái)均購(gòu)買
個(gè)一級(jí)濾芯、
個(gè)二級(jí)濾芯作為備用濾芯(其中
,
),計(jì)算這
臺(tái)凈水器在使用期內(nèi)購(gòu)買濾芯所需總費(fèi)用的平均數(shù).并以此作為決策依據(jù),如果客戶購(gòu)買凈水器的同時(shí)購(gòu)買備用濾芯的總數(shù)也為
個(gè),則其中一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù)應(yīng)分別是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓及直線
:
.
(1)證明:不論取什么實(shí)數(shù),直線
與圓C總相交;
(2)求直線被圓C截得的弦長(zhǎng)的最小值及此時(shí)的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,
分別為
三邊中點(diǎn),將
分別沿
向上折起,使
重合,記為
,則三棱錐
的外接球表面積的最小值為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,{bn}滿足bn=2nan,b3=10,且{bn}是等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng);
(2)求數(shù)列{an}的前n項(xiàng)和為Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),
.有下列命題:
①對(duì),恒有
成立.
②,使得
成立.
③“若,則有
且
.”的否命題.
④“若且
,則有
.”的逆否命題.
其中,真命題有_____________.(只需填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)求曲線在點(diǎn)
處的切線方程;
(Ⅱ)當(dāng)時(shí),求證:函數(shù)
存在極小值;
(Ⅲ)請(qǐng)直接寫出函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com