【題目】如圖,已知是半徑為2的半球
的直徑,
為球面上的兩點(diǎn)且
,
.
(1)求證:平面平面
;
(2)求二面角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)作
于點(diǎn)
,連
,由勾股定理及三角形全等得
,根據(jù)線面垂直的判定定理得
平面
,進(jìn)而可得結(jié)果;(2)以
為原點(diǎn),
所在直線分別為
軸,
軸,
軸,建立空間直角坐標(biāo)系,分別求出平面
與平面的
一個法向量,根據(jù)空間向量夾角余弦公式,可得結(jié)果.
試題解析:(1)在中,過
作
于點(diǎn)
,連
.
由可知
,且
,
又 ,∴
.
又, ∴
平面
,又
平面
,
∴平面平面
.
(2)由(1)可知兩兩垂直,故以
為原點(diǎn),
所在直線分別為
軸,
軸,
軸,如圖建立空間直角坐標(biāo)系,可知
.
設(shè)平面的法向量為
,
則,即
, ∴
,
令,則得
, ∴
,
又平面的法向量
, ∴
,
而二面角與
的夾角相等,因此所求的二面角
的余弦值為
.
【方法點(diǎn)晴】本題主要考查利用面面垂直的判定定理以及空間向量求法向量求二面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x3+ax2+bx+
(a,b是實(shí)數(shù)),且f′(2)=0,f(﹣1)=0.
(1)求實(shí)數(shù)a,b的值;
(2)當(dāng)x∈[﹣1,t]時,求f(x)的最大值g(t)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)在開學(xué)季準(zhǔn)備銷售一種盒飯進(jìn)行試創(chuàng)業(yè),在一個開學(xué)季內(nèi),每售出1盒該盒飯獲利潤10元,未售出的產(chǎn)品,每盒虧損5元.根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個開學(xué)季購進(jìn)了150盒該產(chǎn)品,以(單位:盒,
)表示這個開學(xué)季內(nèi)的市場需求量,
(單位:元)表示這個開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.
(Ⅰ)根據(jù)直方圖估計這個開學(xué)季內(nèi)市場需求量的平均數(shù)和眾數(shù);
(Ⅱ)將表示為
的函數(shù);
(Ⅲ)根據(jù)頻率分布直方圖估計利潤不少于1350元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系
取相同的長度單位,且以原點(diǎn)
為極點(diǎn),以
軸非負(fù)半軸為極軸)中,直線
的方程為
.
(1)求曲線的普通方程及直線
的直角坐標(biāo)方程;
(2)設(shè)是曲線
上的任意一點(diǎn),求點(diǎn)
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列對于確定的正整數(shù)
,若存在正整數(shù)
使得
成立,則稱數(shù)列
為“
階可分拆數(shù)列”.
(1)設(shè) 是首項為2,公差為2的等差數(shù)列,證明
為“3階可分拆數(shù)列”;
(2)設(shè)數(shù)列的前
項和為
,若數(shù)列
為“
階可分拆數(shù)列”,求實(shí)數(shù)
的值;
(3)設(shè),試探求是否存在
使得若數(shù)列
為“
階可分拆數(shù)列”.若存在,請求出所有
,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù) 的定義域;
(2)若存在a∈R,對任意 ,總存在唯一x0∈[﹣1,2],使得f(x1)=g(x0)成立.求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】請先閱讀:
在等式cos2x=2cos2x﹣1(x∈R)的兩邊求導(dǎo),得:(cos2x)′=(2cos2x﹣1)′,由求導(dǎo)法則,得(﹣sin2x)2=4cosx(﹣sinx),化簡得等式:sin2x=2cosxsinx.
(1)利用上題的想法(或其他方法),結(jié)合等式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈R,正整數(shù)n≥2),證明: .
(2)對于正整數(shù)n≥3,求證:
(i) ;
(ii) ;
(iii) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn是等差數(shù)列{an}的前n項和,且a2=2,S5=15.
(1)求通項公式an;
(2)若數(shù)列{bn}滿足bn=2an﹣an , 求{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com