【題目】下列說法中正確的是( )
A.若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的值越接近于1
B.設(shè)有一個回歸方程,變量
增加一個單位時,
平均增加5個單位
C.把某中學(xué)的高三年級560名學(xué)生編號:1到560,再從編號為1到10的10名學(xué)生中隨機抽取1名學(xué)生,其編號為,然后抽取編號為
,
,
,…的學(xué)生,這樣的抽樣方法是分層抽樣
D.若一組數(shù)據(jù)0,,3,4的平均數(shù)是2,則該組數(shù)據(jù)的方差是
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從年底開始,非洲東部的肯尼亞等國家爆發(fā)出了一場嚴(yán)重的蝗蟲災(zāi)情.目前,蝗蟲已抵達(dá)烏干達(dá)和坦桑尼亞,并向西亞和南亞等地區(qū)蔓延.蝗蟲危害大,主要危害禾本科植物,能對農(nóng)作物造成嚴(yán)重傷害,每只蝗蟲的平均產(chǎn)卵數(shù)
和平均溫度
有關(guān),現(xiàn)收集了以往某地的
組數(shù)據(jù),得到下面的散點圖及一些統(tǒng)計量的值.
平均溫度 | |||||||
平均產(chǎn)卵數(shù) |
表中,
.
(1)根據(jù)散點圖判斷,與
(其中
為自然對數(shù)的底數(shù))哪一個更適宜作為平均產(chǎn)卵數(shù)
關(guān)于平均溫度
的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結(jié)果及表中數(shù)據(jù),求出
關(guān)于
的回歸方程.(結(jié)果精確到小數(shù)點后第三位)
(2)根據(jù)以往統(tǒng)計,該地每年平均溫度達(dá)到以上時蝗蟲會造成嚴(yán)重傷害,需要人工防治,其他情況均不需要人工防治,記該地每年平均溫度達(dá)到
以上的概率為
.
①記該地今后年中,恰好需要
次人工防治的概率為
,求
取得最大值時相應(yīng)的概率
;
②根據(jù)①中的結(jié)論,當(dāng)取最大值時,記該地今后
年中,需要人工防治的次數(shù)為
,求
的數(shù)學(xué)期望和方差.
附:對于一組數(shù)據(jù)、
、
、
,其回歸直線
的斜率和截距的最小二乘法估計分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代十進制的算籌計數(shù)法,在數(shù)學(xué)史上是一個偉大的創(chuàng)造,算籌實際上是一根根同長短的小木棍.如圖,是利用算籌表示數(shù)1-9的一種方法.例如:3可表示為“≡”,26可表示為“=⊥”,現(xiàn)有6根算籌,據(jù)此表示方法,若算籌不能剩余,則可以用1-9這9個數(shù)字表示兩位數(shù)中,能被3整除的概率是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于由正整數(shù)構(gòu)成的數(shù)列,若對任意
,
“且
,
也是
中的項,則稱
為
數(shù)列”.設(shè)數(shù)列
|滿足
,
..
(1)請給出一個的通項公式,使得
既是等差數(shù)列也是“
數(shù)列”,并說明理由;
(2)根據(jù)你給出的通項公式,設(shè)的前
項和為
,求滿足
的正整數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:x2=2py(p>0),F為拋物線C的焦點.以F為圓心,p為半徑作圓,與拋物線C在第一象限交點的橫坐標(biāo)為2.
(1)求拋物線C的方程;
(2)直線y=kx+1與拋物線C交于A,B兩點,過A,B分別作拋物線C的切線l1,l2,設(shè)切線l1,l2的交點為P,求證:△PAB為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
是自然對數(shù)的底數(shù)).證明:
(1)存在唯一的極值點;
(2)有且僅有兩個實根,且兩個實根互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面
平面
,底面
為梯形,
,
.
(1)平面
;
(2)平面
;
(3)是棱
的中點,棱
上存在一點
,使
.
正確命題的序號為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
的焦點
是橢圓
的一個焦點.
(1)求拋物線的方程;
(2)設(shè),
,
為拋物線
上的不同三點,點
,且
.求證:直線
過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校近幾年來通過“書香校園”主題系列活動,倡導(dǎo)學(xué)生整本閱讀紙質(zhì)課外書籍.下面的統(tǒng)計圖是該校2013年至2018年紙質(zhì)書人均閱讀量的情況,根據(jù)統(tǒng)計圖提供的信息,下列推斷不合理的是( )
A.從2013年到2016年,該校紙質(zhì)書人均閱讀量逐年增長
B.2013年至2018年,該校紙質(zhì)書人均閱讀量的中位數(shù)是46.7本
C.2013年至2018年,該校紙質(zhì)書人均閱讀量的極差是45.3本
D.2013年至2018年,該校后三年紙質(zhì)書人均閱讀量總和是前三年紙質(zhì)書人均閱讀量總和的2倍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com