【題目】已知函數(shù) .
(1)討論 的單調(diào)性;
(2)若 有兩個極值點
,
,證明:
.
【答案】
(1)解:函數(shù) 的定義域為
.
.
,方程
的判別式
.
①當(dāng) 時,
,∴
,故函數(shù)
在
上遞減;
②當(dāng) 時,
,由
可得
,
.
函數(shù) 的減區(qū)間為
;增區(qū)間為
.
所以,當(dāng) 時,
在
上遞減;當(dāng)
時,
在
上遞增,在
上遞減
(2)解:由 (1)知當(dāng) 時,函數(shù)
有兩個極值點
,且
.
設(shè) ,則
,
,
所以 在
上遞增,
,
所以 .
【解析】(1)根據(jù)題目中所給的條件的特點,先求出函數(shù)的導(dǎo)數(shù),通過分類討論a的值,確定導(dǎo)函數(shù)的符號,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而判斷函數(shù)的單調(diào)性;
(2)表示出f(x1)+f(x2),通過利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值進行證明.導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系:
(1)若f′(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù),f′(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;
(2)若f′(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù),f′(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有下面四個命題
p1:若復(fù)數(shù)z滿足 ∈R,則z∈R;
p2:若復(fù)數(shù)z滿足z2∈R,則z∈R;
p3:若復(fù)數(shù)z1 , z2滿足z1z2∈R,則z1= ;
p4:若復(fù)數(shù)z∈R,則 ∈R.
其中的真命題為( 。
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓 :
(
)的焦距與橢圓
:
的短軸長相等,且
與
的長軸長相等,這兩個橢圓在第一象限的交點為
,直線
經(jīng)過
在
軸正半軸上的頂點
且與直線
(
為坐標(biāo)原點)垂直,
與
的另一個交點為
,
與
交于
,
兩點.
(1)求 的標(biāo)準(zhǔn)方程;
(2)求 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點 ,焦點在
軸上,離心率為
的橢圓過點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓與 軸的非負(fù)半軸交于點
,過點
作互相垂直的兩條直線,分別交橢圓于點
,
兩點,連接
,求
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐 中,底面
為正方形,
平面
,且
,點
在線段
上,且
.
(Ⅰ)證明:平面 平面
;
(Ⅱ)求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 為半圓
的直徑,點
是半圓弧上的兩點,
,
.曲線
經(jīng)過點
,且曲線
上任意點
滿足:
為定值.
(Ⅰ)求曲線 的方程;
(Ⅱ)設(shè)過點 的直線
與曲線
交于不同的兩點
,求
面積最大時的直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com