日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四邊形是正方形,平面,,, 分別為,的中點(diǎn).

          1求證:平面

          2求平面與平面所成銳二面角的大小.

          【答案】1證明見解析;2

          【解析】

          試題1利用已知的線面垂直關(guān)系建立空間直角坐標(biāo)系,準(zhǔn)確寫出相關(guān)點(diǎn)的坐標(biāo),從而將幾何證明轉(zhuǎn)化為向量運(yùn)算.其中靈活建系是解題的關(guān)鍵.2證明證線線垂直,只需要證明直線的方向向量垂直;3把向量夾角的余弦值轉(zhuǎn)化為兩平面法向量夾角的余弦值;4空間向量將空間位置關(guān)系轉(zhuǎn)化為向量運(yùn)算,應(yīng)用的核心是要充分認(rèn)識(shí)形體特征,建立恰當(dāng)?shù)淖鴺?biāo)系,實(shí)施幾何問題代數(shù)化.同時(shí)注意兩點(diǎn):一是正確寫出點(diǎn)、向量的坐標(biāo),準(zhǔn)確運(yùn)算;二是空間位置關(guān)系中判定定理與性質(zhì)定理?xiàng)l件要完備.

          試題解析:1證明:,分別為,的中點(diǎn),

          .

          平面,平面,

          平面.

          2:平面,,平面

          平面.

          四邊形是正方形,.

          為原點(diǎn),分別以直線軸, 軸,

          建立如圖所示的空間直角坐標(biāo)系,設(shè)

          ,

          ,,,,

          ,.

          , 分別為,的中點(diǎn),

          ,,,

          解法一設(shè)為平面的一個(gè)法向量,則,

          ,令,得.

          設(shè)為平面的一個(gè)法向量,則,

          ,令,得.

          所以==.

          所以平面與平面所成銳二面角的大小為

          解法二,,

          是平面一個(gè)法向量.

          ,,

          是平面平面一個(gè)法向量.

          平面與平面所成銳二面角的大小為).

          解法延長(zhǎng)使得

          ,,

          四邊形是平行四邊形,

          四邊形是正方形

          ,分別為,的中點(diǎn),

          平面,平面, 平面.

          平面平面平面

          平面與平面所成銳二面角與二面角相等.

          平面平面

          平面是二面角的平面角.

          平面與平面所成銳二面角的大小為).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】從某工廠生產(chǎn)線上隨機(jī)抽取16件零件,測(cè)量其內(nèi)徑數(shù)據(jù)從小到大依次排列如下:1.12,1.25,1.21,1.23,1.25,1.25,1.26,1.30,1.30,1.32,1.34,1.35,1.37,1.38,1.41,1.42.據(jù)此可估計(jì)該生產(chǎn)線上大約有25%的零件內(nèi)徑小于等于___________,大約有30%的零件內(nèi)徑大于___________mm(單位:mm.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)f (x)=ln x-x+1.

          (1)討論函數(shù)f (x)的單調(diào)性;

          (2)證明當(dāng)x∈(1,+∞)時(shí), ;

          (3)設(shè)c>1,證明當(dāng)x∈(0,1)時(shí),1+(c-1)x>cx.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若函數(shù)滿足(1)對(duì)于定義域上的任意,恒有;(2)對(duì)于定義域上的任意當(dāng)時(shí),恒有,則稱函數(shù)理想函數(shù),給出下列四個(gè)函數(shù)中:① ; ;③;④,則被稱為理想函數(shù)的有(

          A.B.②④C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知二次函數(shù).

          1)若方程兩個(gè)根之和為4,兩根之積為3,且過(guò)點(diǎn)(2,1).的解集;

          2)若關(guān)于的不等式的解集為.

          (。┣蠼怅P(guān)于的不等式

          (ⅱ)設(shè)函數(shù),求函數(shù)的最大值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】過(guò)圓上的點(diǎn)作圓的切線,過(guò)點(diǎn)作切線的垂線若直線過(guò)拋物線的焦點(diǎn).

          (1)求直線與拋物線的方程;

          2若直線與拋物線交于點(diǎn),點(diǎn)在拋物線的準(zhǔn)線上,的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在某親子游戲結(jié)束時(shí)有一項(xiàng)抽獎(jiǎng)活動(dòng),抽獎(jiǎng)規(guī)則是:盒子里面共有5個(gè)小球,小球上分別寫有0,1,2,3,4的數(shù)字,小球除數(shù)字外其它完全相同,每對(duì)親子中,家長(zhǎng)先從盒子中取出一個(gè)小球,記下數(shù)字后將小球放回,孩子再?gòu)暮凶又腥〕鲆粋(gè)小球,記下小球上數(shù)字將小球放回.抽獎(jiǎng)活動(dòng)的獎(jiǎng)勵(lì)規(guī)則是:①若取出的兩個(gè)小球上數(shù)字之積大于8,則獎(jiǎng)勵(lì)飛機(jī)玩具一個(gè);②若取出的兩個(gè)小球上數(shù)字之積在區(qū)間上,則獎(jiǎng)勵(lì)汽車玩具一個(gè);③若取出的兩個(gè)小球上數(shù)字之積小于2,則獎(jiǎng)勵(lì)飲料一瓶.

          (1)求每對(duì)親子獲得飛機(jī)玩具的概率;

          (2)試比較每對(duì)親子獲得汽車玩具與獲得飲料的概率,哪個(gè)更大?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司試銷一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y()與銷售單價(jià)x()之間的關(guān)系可近似看作一次函數(shù)ykxb(k≠0),函數(shù)圖象如圖所示.

          (1)根據(jù)圖象,求一次函數(shù)ykxb(k≠0)的表達(dá)式;

          (2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)-成本總價(jià))S元.試問銷售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤(rùn)?最大毛利潤(rùn)是多少?此時(shí)的銷售量是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.

          (1).證明:平面PAB⊥平面PAD;

          (2).若PA=PD=AB=DC, ∠APD =90°,且四棱錐PABCD的體積為,求該四棱錐的側(cè)面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案