日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)f (x)=ln x-x+1.

          (1)討論函數(shù)f (x)的單調(diào)性;

          (2)證明當x∈(1,+∞)時, ;

          (3)設(shè)c>1,證明當x∈(0,1)時,1+(c-1)x>cx.

          【答案】(1)見解析;(2)見解析;(3)見解析

          【解析】試題分析:1求出在定義域內(nèi)分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間; 2原不等式等價于,運用(1)的單調(diào)性可得設(shè),求出單調(diào)性,即可得到成立;(3設(shè),求出導(dǎo)數(shù),可令, 可得,由1可得有一解,設(shè)為的最小值點,運用最值,結(jié)合不等式的性質(zhì),即可得證,

          試題解析:(1)解 由f (x)=ln x-x+1(x>0),得f ′(x)=-1.

          令f ′(x)=0,解得x=1.

          當0<x<1時,f ′(x)>0,f (x)單調(diào)遞增.

          當x>1時,f ′(x)<0,f (x)單調(diào)遞減.

          因此f (x)在(0,1)上是增函數(shù),在x∈(1,+∞)上為減函數(shù).

          (2)證明 由(1)知,函數(shù)f (x)在x=1處取得最大值f (1)=0.

          ∴當x≠1時,ln x<x-1.

          故當x∈(1,+∞)時,ln x<x-1,ln<-1,即1<<x.

          (3)證明 由題設(shè)c>1,設(shè)g(x)=1+(c-1)x-cx,

          則g′(x)=c-1-cxln c.

          令g′(x)=0,解得x0.

          當x<x0時,g′(x)>0,g(x)單調(diào)遞增;

          當x>x0時,g′(x)<0,g(x)單調(diào)遞減.

          由(2)知1<<c,故0<x0<1.

          又g(0)=g(1)=0,故當0<x<1時,g(x)>0.

          ∴當x∈(0,1)時,1+(c-1)x>cx.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示的幾何體QPABCD為一簡單組合體,在底面ABCD中,∠DAB=60°,ADDC,ABBC,QD⊥平面ABCD,PAQD,PA=1,ADABQD=2.

          (1)求證:平面PAB⊥平面QBC;

          (2)求該組合體QPABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平面PAC⊥平面ABC,點E、F、O分別為線段PA、PB、AC的中點,點G是線段CO的中點,ABBCAC4,PAPC2.求證:

          1PA⊥平面EBO;

          2FG∥平面EBO

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2019年4月23日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機抽取了100名學(xué)生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),按閱讀時間分組:第一組[0,5), 第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示。已知第三組的頻數(shù)是第五組頻數(shù)的3倍。

          (1)求的值,并根據(jù)頻率分布直方圖估計該校學(xué)生一周課外閱讀時間的平均值;

          (2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加!爸腥A詩詞比賽”。經(jīng)過比賽后,從這6人中隨機挑選2人組成該校代表隊,求這2人來自不同組別的概率。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點.

          (1)設(shè)P是上的一點,且AP⊥BE,求∠CBP的大;

          (2)當AB=3,AD=2時,求二面角E-AG-C的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)的定義域為(0,+∞),且對一切x>0,y>0都有,當時,有

          (1)求f(1)的值;

          (2)判斷f(x)的單調(diào)性并加以證明;

          (3)若f(4)=2,求f(x)在[1,16]上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】氣象意義上,從春季進入夏季的標志為:“連續(xù)5天的日平均溫度不低于22℃”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):

          ①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;

          ②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24;

          ③丙地:5個數(shù)據(jù)的中有一個數(shù)據(jù)是32,總體均值為26,總體方差為10.8;

          則肯定進入夏季的地區(qū)的有( )

          A. ①②③ B. ①③ C. ②③ D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形是正方形,平面,,,, 分別為,,的中點.

          1求證:平面;

          2求平面與平面所成銳二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , .

          (Ⅰ)證明: ;

          (Ⅱ)若直線與平面所成角為,求二面角的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案