日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某公司試銷(xiāo)一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷(xiāo)時(shí)銷(xiāo)售單價(jià)不低于成本單價(jià),又不高于800元.經(jīng)試銷(xiāo)調(diào)查,發(fā)現(xiàn)銷(xiāo)售量y()與銷(xiāo)售單價(jià)x()之間的關(guān)系可近似看作一次函數(shù)ykxb(k≠0),函數(shù)圖象如圖所示.

          (1)根據(jù)圖象,求一次函數(shù)ykxb(k≠0)的表達(dá)式;

          (2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷(xiāo)售總價(jià)-成本總價(jià))S元.試問(wèn)銷(xiāo)售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤(rùn)?最大毛利潤(rùn)是多少?此時(shí)的銷(xiāo)售量是多少?

          【答案】(1) y=-x1000(500≤x≤800)

          (2) 銷(xiāo)售單價(jià)定為750元時(shí),可獲得最大毛利潤(rùn)62500元,此時(shí)銷(xiāo)售量為250

          【解析】試題分析:(1)由于為一次函數(shù)所以只需從圖中找兩點(diǎn)坐標(biāo)代入即可;(2)銷(xiāo)售總價(jià)銷(xiāo)售單價(jià)銷(xiāo)售量,成本總價(jià)成本單價(jià)銷(xiāo)售量,得毛利潤(rùn)為關(guān)于的一元二次函數(shù)注意,為二次函數(shù)給定區(qū)間求最值問(wèn)題.

          試題解析:由圖象知,當(dāng)時(shí),;當(dāng)時(shí),,

          分別代入,解得,

          所以6

          銷(xiāo)售總價(jià)銷(xiāo)售單價(jià)銷(xiāo)售量,成本總價(jià)成本單價(jià)銷(xiāo)售量

          代入求毛利潤(rùn)的公式,得

          10

          ,

          當(dāng)時(shí),,此時(shí)14

          答:當(dāng)銷(xiāo)售單價(jià)為/件時(shí),可獲得最大毛利潤(rùn)為元,此時(shí)銷(xiāo)售量為件. 16

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)的定義域?yàn)?/span>,且是偶函數(shù).

          (1)求實(shí)數(shù)的值;

          (2)證明:函數(shù)上是減函數(shù);

          (3)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某電子元件廠對(duì)一批新產(chǎn)品的使用壽命進(jìn)行檢驗(yàn),并且廠家規(guī)定使用壽命在為合格品,使用壽命超過(guò)500小時(shí)為優(yōu)質(zhì)品,質(zhì)檢科抽取了一部分產(chǎn)品做樣本,經(jīng)檢測(cè)統(tǒng)計(jì)后,繪制出了該產(chǎn)品使用壽命的頻率分布直方圖(如圖):

          (1)根據(jù)頻率分布直方圖估計(jì)該廠產(chǎn)品為合格品或優(yōu)質(zhì)品的概率,并估計(jì)該批產(chǎn)品的平均使用壽命;

          (2)從這批產(chǎn)品中,采取隨機(jī)抽樣的方法每次抽取一件產(chǎn)品,抽取4次,若以上述頻率作為概率,記隨機(jī)變量為抽出的優(yōu)質(zhì)品的個(gè)數(shù),列出的分布列,并求出其數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(本小題滿分12分,第(1)問(wèn) 4 分,第(2)問(wèn) 8 分)

          某闖關(guān)游戲規(guī)則是:先后擲兩枚骰子,將此實(shí)驗(yàn)重復(fù)輪,第輪的點(diǎn)數(shù)分別記為,如果點(diǎn)數(shù)滿足,則認(rèn)為第輪闖關(guān)成功,否則進(jìn)行下一輪投擲,直到闖關(guān)成功,游戲結(jié)束。

          求第一輪闖關(guān)成功的概率;

          如果游戲只進(jìn)行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進(jìn)行的輪數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】【2017屆廣東省深圳市高三下學(xué)期第一次調(diào)研考試(一模)數(shù)學(xué)(文)】已知函數(shù)的導(dǎo)函數(shù),為自然對(duì)數(shù)的底數(shù).

          (1)討論的單調(diào)性;

          (2)當(dāng)時(shí),證明:;

          (3)當(dāng)時(shí),判斷函數(shù)零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】【2017屆云南曲靖一中高三文上學(xué)期月考四】已知函數(shù)

          (1)若的極值點(diǎn),的極大值;

          (2)求的范圍使得恒成立

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗(yàn),準(zhǔn)備用、三種人工降雨方式分別對(duì)甲、乙、丙三地實(shí)施人工降雨,其試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)如表:

          方式

          實(shí)施地點(diǎn)

          大雨

          中雨

          小雨

          模擬實(shí)驗(yàn)總次數(shù)

          4次

          6次

          2次

          12次

          3次

          6次

          3次

          12次

          2次

          2次

          8次

          12次

          假定對(duì)甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,請(qǐng)你根據(jù)人工降雨模擬實(shí)驗(yàn)的統(tǒng)計(jì)數(shù)據(jù):

          (Ⅰ)求甲、乙、丙三地都恰為中雨的概率;

          (Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只能是小雨或中雨即達(dá)到理想狀態(tài),記“甲、乙、丙三地中達(dá)到理想狀態(tài)的個(gè)數(shù)”為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)若函數(shù)在點(diǎn)處的切線方程為,求的值;

          (2)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】底面為菱形的直棱柱

          中,

          分別為棱

          的中點(diǎn).

          (1)在圖中作一個(gè)平面

          ,使得

          ,且平面

          .(不必給出證明過(guò)程,只要求作出

          與直棱柱

          的截面).

          (2)若

          ,求平面

          與平面

          的距離

          .

          查看答案和解析>>

          同步練習(xí)冊(cè)答案