【題目】如圖,三棱錐中,
平面
,
,
,
,
是
的中點(diǎn),
是
的中點(diǎn),點(diǎn)
在
上,
.
(1)證明:平面平面
;
(2)證明:平面
;
(3)求二面角的正弦值.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3).
【解析】
(1)利用余弦定理計(jì)算出,由勾股定理可得出
,再由
平面
,可得出
,利用直線與平面垂直的判定定理可證明出
平面
,然后利用平面與平面垂直的判定定理可證明出平面
平面
;
(2)證法一:過(guò)點(diǎn)作
交
于點(diǎn)
,取
的中點(diǎn)
,連接
、
,證明四邊形
為平行四邊形,可得出
,然后利用直線與平面平行的判定定理可證明出
平面
;
證法二:取中點(diǎn)
,連接
、
,證明平面
平面
,即可得出
平面
;
(3)過(guò)點(diǎn)作
,垂足為
,在直角
中過(guò)點(diǎn)
作
,垂足為
,證明出
平面
,可知二面角
的平面角為
,計(jì)算出
中的
和
,然后利用銳角三角函數(shù)的定義求出
即可.
(1)在中,由余弦定理得
,
即,解得
,
,則
,
.
因?yàn)?/span>平面
,
平面
,所以
.
,
、
平面
,
平面
.
平面
,
平面
平面
;
(2)證法一:過(guò)點(diǎn)作
交
于點(diǎn)
,取
的中點(diǎn)
,連接
、
.
點(diǎn)
為
的中點(diǎn),
為
的中點(diǎn),
,
.
又是
的中點(diǎn),
是
的中點(diǎn),點(diǎn)
在
上,
,且
,
,
,
且
,
所以四邊形為平行四邊形,
,
平面
,
平面
,
平面
;
法二:取中點(diǎn)
,連接
、
,
、
分別為
、
的中點(diǎn),
.
平面
,
平面
,
平面
.
為
的中點(diǎn),
為
的中點(diǎn),
,則
,
,即
,
,
.
平面
,
平面
,
平面
.
因?yàn)?/span>,所以平面
平面
,
平面
,所以
平面
;
(3)過(guò)點(diǎn)作
,垂足為
,在平面
內(nèi)過(guò)點(diǎn)
作
,垂足為
,
平面
,
平面
,
,
,
,
平面
,
平面
,
,
,
,
平面
,
平面
,
,則
為二面角
的平面角,
由等面積法可得,
平面
,
平面
,
,
在中,
,
,
,
由等面積法得,則
.
因此,二面角的正弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)前,以“立德樹(shù)人”為目標(biāo)的課程改革正在有序推進(jìn).高中聯(lián)招對(duì)初三畢業(yè)學(xué)生進(jìn)行體育測(cè)試,是激發(fā)學(xué)生、家長(zhǎng)和學(xué)校積極開(kāi)展體育活動(dòng),保證學(xué)生健康成長(zhǎng)的有效措施.程度2019年初中畢業(yè)生升學(xué)體育考試規(guī)定,考生必須參加立定跳遠(yuǎn)、擲實(shí)心球、1分鐘跳繩三項(xiàng)測(cè)試,三項(xiàng)考試滿分50分,其中立定跳遠(yuǎn)15分,擲實(shí)心球15分,1分鐘跳繩20分.某學(xué)校在初三上期開(kāi)始時(shí)要掌握全年級(jí)學(xué)生每分鐘跳繩的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測(cè)試,得到下邊頻率分布直方圖,且規(guī)定計(jì)分規(guī)則如下表:
每分鐘跳繩個(gè)數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(Ⅰ)現(xiàn)從樣本的100名學(xué)生中,任意選取2人,求兩人得分之和不大于35分的概率;;
(Ⅱ)若該校初三年級(jí)所有學(xué)生的跳繩個(gè)數(shù)服從正態(tài)分布
,用樣本數(shù)據(jù)的平均值和方差估計(jì)總體的期望和方差,已知樣本方差
(各組數(shù)據(jù)用中點(diǎn)值代替).根據(jù)往年經(jīng)驗(yàn),該校初三年級(jí)學(xué)生經(jīng)過(guò)一年的訓(xùn)練,正式測(cè)試時(shí)每人每分鐘跳繩個(gè)數(shù)都有明顯進(jìn)步,假設(shè)今年正式測(cè)試時(shí)每人每分鐘跳繩個(gè)數(shù)比初三上學(xué)期開(kāi)始時(shí)個(gè)數(shù)增加10個(gè),現(xiàn)利用所得正態(tài)分布模型:
預(yù)計(jì)全年級(jí)恰有2000名學(xué)生,正式測(cè)試每分鐘跳182個(gè)以上的人數(shù);(結(jié)果四舍五入到整數(shù))
若在全年級(jí)所有學(xué)生中任意選取3人,記正式測(cè)試時(shí)每分鐘跳195以上的人數(shù)為ξ,求隨機(jī)變量的分布列和期望.
附:若隨機(jī)變量服從正態(tài)分布
,則
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左頂點(diǎn)為
,兩個(gè)焦點(diǎn)與短軸一個(gè)頂點(diǎn)構(gòu)成等腰直角三角形,過(guò)點(diǎn)
且與x軸不重合的直線l與橢圓交于M,N不同的兩點(diǎn).
(Ⅰ)求橢圓P的方程;
(Ⅱ)當(dāng)AM與MN垂直時(shí),求AM的長(zhǎng);
(Ⅲ)若過(guò)點(diǎn)P且平行于AM的直線交直線于點(diǎn)Q,求證:直線NQ恒過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
,
,直線
(
)與橢圓
交于
,
兩點(diǎn)(點(diǎn)
在
軸的上方).
(1)若,求
的面積;
(2)是否存在實(shí)數(shù)使得以線段
為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)
?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】是空氣質(zhì)量的一個(gè)重要指標(biāo),我國(guó)
標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即
日均值在
以下空氣質(zhì)量為一級(jí),在
之間空氣質(zhì)量為二級(jí),在
以上空氣質(zhì)量為超標(biāo).如圖是某地
月
日到
日
日均值(單位:
)的統(tǒng)計(jì)數(shù)據(jù),則下列敘述不正確的是( )
A.從日到
日,
日均值逐漸降低
B.這天的
日均值的中位數(shù)是
C.這天中
日均值的平均數(shù)是
D.從這天的日均
監(jiān)測(cè)數(shù)據(jù)中隨機(jī)抽出一天的數(shù)據(jù),空氣質(zhì)量為一級(jí)的概率是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長(zhǎng)方體、正方體或圓柱體,但南北朝時(shí)期的官員獨(dú)孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對(duì)稱(chēng)美.圖2是一個(gè)棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個(gè)正方體的表面上,且此正方體的棱長(zhǎng)為1.則該半正多面體共有________個(gè)面,其棱長(zhǎng)為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】年
月,電影《毒液》在中國(guó)上映,為了了解江西觀眾的滿意度,某影院隨機(jī)調(diào)查了本市觀看影片的觀眾,現(xiàn)從調(diào)查人群中隨機(jī)抽取部分觀眾.并用如圖所示的表格記錄了他們的滿意度分?jǐn)?shù)(
分制),若分?jǐn)?shù)不低于
分,則稱(chēng)該觀眾為“滿意觀眾”,請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問(wèn)題.
組別 | 分組 | 頻數(shù) | 頻率 |
第 | |||
第 | |||
第 | |||
第 | |||
第 | |||
合計(jì) |
(1)寫(xiě)出、
的值;
(2)畫(huà)出頻率分布直方圖,估算中位數(shù);
(3)在選取的樣本中,從滿意觀眾中隨機(jī)抽取名觀眾領(lǐng)取獎(jiǎng)品,求所抽取的
名觀眾中至少有
名觀眾來(lái)自第
組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).證明:
(1)存在唯一的極值點(diǎn);
(2)有且僅有兩個(gè)實(shí)根,且兩個(gè)實(shí)根互為倒數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),某企業(yè)每年消耗電費(fèi)約24萬(wàn)元,為了節(jié)能減排,決定安裝一個(gè)可使用15年的太陽(yáng)能供電設(shè)備接入本企業(yè)電網(wǎng),安裝這種供電設(shè)備的工本費(fèi)(單位:萬(wàn)元)與太陽(yáng)能電池板的面積(單位:平方米)成正比,比例系數(shù)約為0.5.為了保證正常用電,安裝后采用太陽(yáng)能和電能互補(bǔ)供電的模式.假設(shè)在此模式下,安裝后該企業(yè)每年消耗的電費(fèi)(單位:萬(wàn)元)與安裝的這種太陽(yáng)能電池板的面積
(單位:平方米)之間的函數(shù)關(guān)系是
為常數(shù)).記
為該村安裝這種太陽(yáng)能供電設(shè)備的費(fèi)用與該村15年共將消耗的電費(fèi)之和.
(1)試解釋的實(shí)際意義,并建立
關(guān)于
的函數(shù)關(guān)系式;
(2)當(dāng)為多少平方米時(shí),
取得最小值?最小值是多少萬(wàn)元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com