日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若給定橢圓和點(diǎn),則稱直線為橢圓C伴隨直線

          1)若在橢圓C上,判斷橢圓C與它的伴隨直線的位置關(guān)系(當(dāng)直線與橢圓的交點(diǎn)個(gè)數(shù)為0個(gè)、1個(gè)、2個(gè)時(shí),分別稱直線與橢圓相離、相切、相交),并說明理由;

          2)命題:若點(diǎn)在橢圓C的外部,則直線與橢圓C必相交.寫出這個(gè)命題的逆命題,判斷此逆命題的真假,說明理由;

          3)若在橢圓C的內(nèi)部,過N點(diǎn)任意作一條直線,交橢圓CA、B,交M點(diǎn)(異于A、B),設(shè),問是否為定值?說明理由.

          【答案】1l與橢圓C相切.見解析(2)逆命題:若直線與橢圓C相交,則點(diǎn)在橢圓C的外部.是真命題.見解析(3)為定值0,見解析

          【解析】

          1 ,由根的差別式能得到l與橢圓C相切.

          2)逆命題:若直線與橢圓C相交,則點(diǎn)在橢圓C的外部.是真命題.聯(lián)立方程得.由,能求出在橢圓C的外部.

          3)此時(shí)與橢圓相離,設(shè)代入橢圓,利用M上,得.由此能求出

          解:(1

          與橢圓C相切.

          2)逆命題:若直線與橢圓C相交,

          則點(diǎn)在橢圓C的外部.

          是真命題.聯(lián)立方程得

          在橢圓C的外部.

          3)同理可得此時(shí)與橢圓相離,設(shè)

          代入橢圓,利用M上,

          ,整理得

          同理得關(guān)于的方程,類似.

          的兩根

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)是各項(xiàng)均為非零實(shí)數(shù)的數(shù)列的前n項(xiàng)和,給出如下兩個(gè)命題上:命題p是等差數(shù)列;命題q:等式對(duì)任意恒成立,其中kb是常數(shù).

          1)若pq的充分條件,求k,b的值;

          2)對(duì)于(1)中的kb,問p是否為q的必要條件,請(qǐng)說明理由;

          3)若p為真命題,對(duì)于給定的正整數(shù)n和正數(shù)M,數(shù)列滿足條件,試求 的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的長軸是短軸的兩倍,以短軸一個(gè)頂點(diǎn)和長軸一個(gè)頂點(diǎn)為端點(diǎn)的線段作直徑的圓的周長等于,直線l與橢圓C交于兩點(diǎn),其中直線l不過原點(diǎn).

          1)求橢圓C的方程;

          2)設(shè)直線的斜率分別為,其中.的面積為S.分別以為直徑的圓的面積依次為,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校為調(diào)查學(xué)生喜歡應(yīng)用統(tǒng)計(jì)課程是否與性別有關(guān),隨機(jī)抽取了選修課程的55名學(xué)生,得到數(shù)據(jù)如下表:

          喜歡統(tǒng)計(jì)課程

          不喜歡統(tǒng)計(jì)課程

          男生

          20

          5

          女生

          10

          20

          1判斷是否有995%的把握認(rèn)為喜歡應(yīng)用統(tǒng)計(jì)課程與性別有關(guān)?

          2用分層抽樣的方法從喜歡統(tǒng)計(jì)課程的學(xué)生中抽取6名學(xué)生作進(jìn)一步調(diào)查,將這6名學(xué)生作為一個(gè)樣本,從中任選2人,求恰有1個(gè)男生和1個(gè)女生的概率

          臨界值參考:

          010

          005

          025

          0010

          0005

          0001

          2706

          3841

          5024

          6635

          7879

          10828

          參考公式:,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知中心在原點(diǎn)的橢圓和拋物線有相同的焦點(diǎn),橢圓過點(diǎn),拋物線的頂點(diǎn)為原點(diǎn).

          求橢圓和拋物線的方程;

          設(shè)點(diǎn)P為拋物線準(zhǔn)線上的任意一點(diǎn),過點(diǎn)P作拋物線的兩條切線PA,PB,其中A,B為切點(diǎn).

          設(shè)直線PA,PB的斜率分別為,,求證:為定值;

          若直線AB交橢圓C,D兩點(diǎn),,分別是,的面積,試問:是否有最小值?若有,求出最小值;若沒有,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線焦點(diǎn)為,為拋物線上在第一象限內(nèi)一點(diǎn),為原點(diǎn),面積為.

          1)求拋物線方程;

          2)過點(diǎn)作兩條直線分別交拋物線于異于點(diǎn)的兩點(diǎn),,且兩直線斜率之和為,

          i)若為常數(shù),求證直線過定點(diǎn);

          ii)當(dāng)改變時(shí),求(i)中距離最近的點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2022年北京冬奧會(huì)的申辦成功與“3億人上冰雪”口號(hào)的提出,將冰雪這個(gè)冷項(xiàng)目迅速炒“熱”.北京某綜合大學(xué)計(jì)劃在一年級(jí)開設(shè)冰球課程,為了解學(xué)生對(duì)冰球運(yùn)動(dòng)的興趣,隨機(jī)從該校一年級(jí)學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對(duì)冰球運(yùn)動(dòng)有興趣的占,而男生有10人表示對(duì)冰球運(yùn)動(dòng)沒有興趣額.

          (1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對(duì)冰球是否有興趣與性別有關(guān)”?

          有興趣

          沒興趣

          合計(jì)

          55

          合計(jì)

          (2)已知在被調(diào)查的女生中有5名數(shù)學(xué)系的學(xué)生,其中3名對(duì)冰球有興趣,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至少有2人對(duì)冰球有興趣的概率.

          附表:

          0.150

          0.100

          0.050

          0.025

          0.010

          2.072

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨(dú)立的從四所高校中選2.

          (Ⅰ)求甲、乙、丙三名同學(xué)都選高校的概率;

          (Ⅱ)若已知甲同學(xué)特別喜歡高校,他必選校,另在三校中再隨機(jī)選1所;而同學(xué)乙和丙對(duì)四所高校沒有偏愛,因此他們每人在四所高校中隨機(jī)選2.

          (ⅰ)求甲同學(xué)選高校且乙、丙都未選高校的概率;

          (ⅱ)記為甲、乙、丙三名同學(xué)中選校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓過點(diǎn)

          (Ⅰ)求橢圓的方程,并求其離心率;

          (Ⅱ)過點(diǎn)軸的垂線,設(shè)點(diǎn)為第四象限內(nèi)一點(diǎn)且在橢圓上(點(diǎn)不在直線上),直線關(guān)于的對(duì)稱直線與橢圓交于另一點(diǎn).設(shè)為坐標(biāo)原點(diǎn),判斷直線與直線的位置關(guān)系,并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案