日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】2022年北京冬奧會(huì)的申辦成功與“3億人上冰雪”口號(hào)的提出,將冰雪這個(gè)冷項(xiàng)目迅速炒“熱”.北京某綜合大學(xué)計(jì)劃在一年級(jí)開設(shè)冰球課程,為了解學(xué)生對冰球運(yùn)動(dòng)的興趣,隨機(jī)從該校一年級(jí)學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對冰球運(yùn)動(dòng)有興趣的占,而男生有10人表示對冰球運(yùn)動(dòng)沒有興趣額.

          (1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對冰球是否有興趣與性別有關(guān)”?

          有興趣

          沒興趣

          合計(jì)

          55

          合計(jì)

          (2)已知在被調(diào)查的女生中有5名數(shù)學(xué)系的學(xué)生,其中3名對冰球有興趣,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至少有2人對冰球有興趣的概率.

          附表:

          0.150

          0.100

          0.050

          0.025

          0.010

          2.072

          2.706

          3.841

          5.024

          6.635

          【答案】(1)有(2)

          【解析】

          (1)根據(jù)題中數(shù)據(jù)得到列聯(lián)表,然后計(jì)算出,與臨界值表中的數(shù)據(jù)對照后可得結(jié)論。(2)由題意得概率為古典概型,根據(jù)古典概型概率公式計(jì)算可得所求。

          1)根據(jù)已知數(shù)據(jù)得到如下列聯(lián)表

          有興趣

          沒有興趣

          合計(jì)

          45

          10

          55

          30

          15

          45

          合計(jì)

          75

          25

          100

          由列聯(lián)表中的數(shù)據(jù)可得

          因?yàn)?/span>,

          所以有90%的把握認(rèn)為“對冰球是否有興趣與性別有關(guān)”.

          (2)記5人中對冰球有興趣的3人為A、B、C,對冰球沒有興趣的2人為m、n

          則從這5人中隨機(jī)抽取3人,所有可能的情況為:(A,m,n),(B,m,n),(C,m,n),(A,B,m),

          (A,B,n),(B,C,m),(B,C,n),(A,C,m),(A,C,n),(A,B,C),10種情況,

          其中3人都對冰球有興趣的情況有(A,B,C),1種,2人對冰球有興趣的情況有(A,B,m),(A,B,n),(B,C,m),(B,C,n),(A,C,m),(A,C,n),6種,

          所以至少2人對冰球有興趣的情況有7種,

          因此,所求概率為。

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)是定義域?yàn)?/span>的函數(shù),對任意,都滿足:,,且當(dāng)時(shí),.

          1)請指出在區(qū)間上的奇偶性、單調(diào)區(qū)間、零點(diǎn);

          2)試證明是周期函數(shù),并求其在區(qū)間)上的解析式;

          3)方程有三個(gè)不等根,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的上下兩個(gè)焦點(diǎn)分別為,過點(diǎn)軸垂直的直線交橢圓兩點(diǎn),的面積為,橢圓的長軸長是短軸長的倍.

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)已知為坐標(biāo)原點(diǎn),直線軸交于點(diǎn),與橢園交于兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知、是定義在實(shí)數(shù)集上的實(shí)值函數(shù),如果存在,使得對任何,都有,那么稱高興,如果對任何,都存在,使得,那么稱幸運(yùn),對于實(shí)數(shù)和上述函數(shù),定義.

          1)①,判斷是否比高興?

          ,,判斷是否比幸運(yùn)?

          2)判斷下列命題是否正確?并說明理由:

          ①如果高興,高興,那么高興;

          ②如果幸運(yùn),幸運(yùn),那么幸運(yùn);

          3)證明:對每個(gè)函數(shù),均存在函數(shù),使得對任何實(shí)數(shù)都比幸運(yùn),也比幸運(yùn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知偶函數(shù)滿足,當(dāng)時(shí),,關(guān)于的不等式上有且只有200個(gè)整數(shù)解,則實(shí)數(shù)的取值范圍為( )

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)a0,a≠1).

          1)判斷并證明函數(shù)fx)的奇偶性;

          2)若ft2t1+ft2)<0,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= ln(a x)+bx在點(diǎn)(1,f(1))處的切線是y=0;

          (I)求函數(shù)f(x)的極值;

          (II)當(dāng)恒成立時(shí),求實(shí)數(shù)m的取值范圍(e為自然對數(shù)的底數(shù))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)討論的單調(diào)性;

          (2)當(dāng)時(shí),,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓長軸的一個(gè)端點(diǎn)是拋物線的焦點(diǎn),且橢圓焦點(diǎn)與拋物線焦點(diǎn)的距離是1。

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)若是橢圓的左右端點(diǎn),為原點(diǎn),是橢圓上異于的任意一點(diǎn),直線分別交軸于,問是否為定值,說明理由。

          查看答案和解析>>

          同步練習(xí)冊答案