日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓長軸的一個(gè)端點(diǎn)是拋物線的焦點(diǎn),且橢圓焦點(diǎn)與拋物線焦點(diǎn)的距離是1。

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)若是橢圓的左右端點(diǎn),為原點(diǎn),是橢圓上異于的任意一點(diǎn),直線分別交軸于,問是否為定值,說明理由。

          【答案】1;(2)為定值,理由見解析.

          【解析】

          1)根據(jù)拋物線的焦點(diǎn)求得,根據(jù)橢圓焦點(diǎn)與拋物線焦點(diǎn)的距離求得,由此求得,進(jìn)而求得橢圓的標(biāo)準(zhǔn)方程.

          2)設(shè)出點(diǎn)坐標(biāo),求得直線的方程,由此求得兩點(diǎn)的坐標(biāo),代入化簡,證得為定值.

          1)依題意可知,拋物線的焦點(diǎn)坐標(biāo)為,故,由于橢圓焦點(diǎn)與拋物線焦點(diǎn)的距離是,而,故.所以.所以橢圓的標(biāo)準(zhǔn)方程為.

          2)設(shè),代入橢圓方程并化簡得,且.所以直線,直線,令分別代入直線的方程,求得,所以為定值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個(gè)冷項(xiàng)目迅速炒“熱”.北京某綜合大學(xué)計(jì)劃在一年級開設(shè)冰球課程,為了解學(xué)生對冰球運(yùn)動的興趣,隨機(jī)從該校一年級學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對冰球運(yùn)動有興趣的占,而男生有10人表示對冰球運(yùn)動沒有興趣額.

          (1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對冰球是否有興趣與性別有關(guān)”?

          有興趣

          沒興趣

          合計(jì)

          55

          合計(jì)

          (2)已知在被調(diào)查的女生中有5名數(shù)學(xué)系的學(xué)生,其中3名對冰球有興趣,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至少有2人對冰球有興趣的概率.

          附表:

          0.150

          0.100

          0.050

          0.025

          0.010

          2.072

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)滿足以下兩個(gè)條件的有窮數(shù)列期待數(shù)列:①;②.

          (1)分別寫出一個(gè)單調(diào)遞增的3階和4期待數(shù)列;

          (2)若某2013期待數(shù)列是等差數(shù)列,求該數(shù)列的通項(xiàng)公式;

          (3)期待數(shù)列的前項(xiàng)和為,試證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列是公差不為0的等差數(shù)列,,數(shù)列是等比數(shù)列,且,,數(shù)列的前n項(xiàng)和為

          1)求數(shù)列的通項(xiàng)公式;

          2)設(shè),求的前n項(xiàng)和;

          3)若恒成立,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)為定義域上的奇函數(shù),且在上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則

          A.18B.9C.27D.81

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點(diǎn)軸左側(cè)(不含軸)一點(diǎn),拋物線上存在不同的兩點(diǎn),滿足、的中點(diǎn)均在拋物線.

          1)求拋物線的焦點(diǎn)到準(zhǔn)線的距離;

          2)設(shè)中點(diǎn)為,且,,證明:;

          3)若是曲線)上的動點(diǎn),求面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)求證:對任意實(shí)數(shù),都有;

          (2)若,是否存在整數(shù),使得在上,恒有成立?若存在,請求出的最大值;若不存在,請說明理由.(

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線的方程為,過原點(diǎn)作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,過作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,過作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,……,如此下去,一般地,過作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,設(shè)點(diǎn).

          1)指出,并求的關(guān)系式

          2)求的通項(xiàng)公式,并指出點(diǎn)列,……,……向哪一點(diǎn)無限接近?說明理由;

          3)令,數(shù)列的前項(xiàng)和為,設(shè),求所有可能的乘積的和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在長方體中,,,,平面截長方體得到一個(gè)矩形,且

          1)求截面把該長方體分成的兩部分體積之比;

          2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案