【題目】已知橢圓過點(diǎn)
.
(Ⅰ)求橢圓的方程,并求其離心率;
(Ⅱ)過點(diǎn)作
軸的垂線
,設(shè)點(diǎn)
為第四象限內(nèi)一點(diǎn)且在橢圓
上(點(diǎn)
不在直線
上),直線
關(guān)于
的對(duì)稱直線
與橢圓交于另一點(diǎn)
.設(shè)
為坐標(biāo)原點(diǎn),判斷直線
與直線
的位置關(guān)系,并說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若給定橢圓和點(diǎn)
,則稱直線
為橢圓C的“伴隨直線”.
(1)若在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關(guān)系(當(dāng)直線與橢圓的交點(diǎn)個(gè)數(shù)為0個(gè)、1個(gè)、2個(gè)時(shí),分別稱直線與橢圓相離、相切、相交),并說明理由;
(2)命題:“若點(diǎn)在橢圓C的外部,則直線
與橢圓C必相交.”寫出這個(gè)命題的逆命題,判斷此逆命題的真假,說明理由;
(3)若在橢圓C的內(nèi)部,過N點(diǎn)任意作一條直線,交橢圓C于A、B,交
于M點(diǎn)(異于A、B),設(shè)
,問
是否為定值?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面為矩形的四棱錐中,平面
平面
.
(1)證明:;
(2)若,
,設(shè)
為
中點(diǎn),求直線
與平面
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某加油站擬建造如圖所示的鐵皮儲(chǔ)油罐(不計(jì)厚度,長度單位為米),其中儲(chǔ)油罐的中間為圓柱形,左右兩端均為半球形,(
為圓柱的高,為球的半徑,
).假設(shè)該儲(chǔ)油罐的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為
千元,半球形部分每平方米建造費(fèi)用為
千元.設(shè)該儲(chǔ)油罐的建造費(fèi)用為
千元.
(1) 寫出關(guān)于
的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(2) 若預(yù)算為萬元,求所能建造的儲(chǔ)油罐中
的最大值(精確到
),并求此時(shí)儲(chǔ)油罐的體積
(單位: 立方米,精確到
立方米).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
,
,
是各項(xiàng)均為正數(shù)的等差數(shù)列,其公差
大于零.若線段
,
,
,
的長分別為
,
,
,
,則( ).
A.對(duì)任意的,均存在以
,
,
為三邊的三角形
B.對(duì)任意的,均不存在以
,
,
為三邊的三角形
C.對(duì)任意的,均存在以
,
,
為三邊的三角形
D.對(duì)任意的,均不存在以
,
,
為三邊的三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,
為坐標(biāo)原點(diǎn),C、D兩點(diǎn)的坐標(biāo)為
,曲線
上的動(dòng)點(diǎn)P滿足
.又曲線
上的點(diǎn)A、B滿足
.
(1)求曲線的方程;
(2)若點(diǎn)A在第一象限,且,求點(diǎn)A的坐標(biāo);
(3)求證:原點(diǎn)到直線AB的距離為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】菱形中,
平面
,
,
,
(1)證明:直線平面
;
(2)求二面角的正弦值;
(3)線段上是否存在點(diǎn)
使得直線
與平面
所成角的正弦值為
?若存在,求
;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線方程為,過其右焦點(diǎn)且斜率不為零的直線
與雙曲線交于A,B兩點(diǎn),直線
的方程為
,A,B在直線
上的射影分別為C,D.
(1)當(dāng)垂直于x軸,
時(shí),求四邊形
的面積;
(2),
的斜率為正實(shí)數(shù),A在第一象限,B在第四象限,試比較
與1的大;
(3)是否存在實(shí)數(shù),使得對(duì)滿足題意的任意
,直線
和直線
的交點(diǎn)總在
軸上,若存在,求出所有的
值和此時(shí)直線
和
交點(diǎn)的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,
、
為橢圓的左、右焦點(diǎn),
為橢圓上一點(diǎn),且
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線,過點(diǎn)
的直線交橢圓于
、
兩點(diǎn),線段
的垂直平分線分別交直線
、直線
于
、
兩點(diǎn),當(dāng)
最小時(shí),求直線
的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com