【題目】已知,
,
,
是各項(xiàng)均為正數(shù)的等差數(shù)列,其公差
大于零.若線段
,
,
,
的長(zhǎng)分別為
,
,
,
,則( ).
A.對(duì)任意的,均存在以
,
,
為三邊的三角形
B.對(duì)任意的,均不存在以
,
,
為三邊的三角形
C.對(duì)任意的,均存在以
,
,
為三邊的三角形
D.對(duì)任意的,均不存在以
,
,
為三邊的三角形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù)
.
(1)求實(shí)數(shù)的值,使得
為奇函數(shù);
(2)若關(guān)于的方程
有兩個(gè)不同實(shí)數(shù)解,求
的取值范圍;
(3)若關(guān)于的不等式
對(duì)任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市2013年發(fā)放汽車牌照12萬(wàn)張,其中燃油型汽車牌照10萬(wàn)張,電動(dòng)型汽車2萬(wàn)張,為了節(jié)能減排和控制總量,從2013年開(kāi)始,每年電動(dòng)型汽車牌照按50%增長(zhǎng),而燃油型汽車牌照每一年比上一年減少0.5萬(wàn)張,同時(shí)規(guī)定一旦某年發(fā)放的牌照超過(guò)15萬(wàn)張,以后每一年發(fā)放的電動(dòng)車的牌照的數(shù)量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)量構(gòu)成數(shù)列,每年發(fā)放電動(dòng)型汽車牌照數(shù)為構(gòu)成數(shù)列
,完成下列表格,并寫出這兩個(gè)數(shù)列的通項(xiàng)公式;
(2)從2013年算起,累計(jì)各年發(fā)放的牌照數(shù),哪一年開(kāi)始超過(guò)200萬(wàn)張?
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中,
,
平面
,
是
的中點(diǎn).
(Ⅰ)若是
的中點(diǎn),求證:平面
平面
;
(Ⅱ)若,求平面
與平面
所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)單調(diào)函數(shù)的定義域?yàn)?/span>
,值域?yàn)?/span>
,如果單調(diào)函數(shù)
使得函數(shù)
的值域也是
,則稱函數(shù)
是函數(shù)
的一個(gè)“保值域函數(shù)”.已知定義域?yàn)?/span>
的函數(shù)
,函數(shù)
與
互為反函數(shù),且
是
的一個(gè)“保值域函數(shù)”,
是
的一個(gè)“保值域函數(shù)”,則
__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求證
在
上是單調(diào)遞減函數(shù);
(2)若對(duì)任意的,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),且
(其中e是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若,求
的單調(diào)區(qū)間;
(Ⅱ)若,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近來(lái)天氣變化無(wú)常,陡然升溫、降溫幅度大于的天氣現(xiàn)象出現(xiàn)增多.陡然降溫幅度大于
容易引起幼兒傷風(fēng)感冒疾病.為了解傷風(fēng)感冒疾病是否與性別有關(guān),在某婦幼保健院隨機(jī)對(duì)人院的
名幼兒進(jìn)行調(diào)查,得到了如下的列聯(lián)表,若在全部
名幼兒中隨機(jī)抽取
人,抽到患傷風(fēng)感冒疾病的幼兒的概率為
,
(1)請(qǐng)將下面的列聯(lián)表補(bǔ)充完整;
患傷風(fēng)感冒疾病 | 不患傷風(fēng)感冒疾病 | 合計(jì) | |
男 | 25 | ||
女 | 20 | ||
合計(jì) | 100 |
(2)能否在犯錯(cuò)誤的概率不超過(guò)的情況下認(rèn)為患傷風(fēng)感冒疾病與性別有關(guān)?說(shuō)明你的理由;
(3)已知在患傷風(fēng)感冒疾病的名女性幼兒中,有
名又患黃痘病.現(xiàn)在從患傷風(fēng)感冒疾病的
名女性中,選出
名進(jìn)行其他方面的排查,記選出患黃痘病的女性人數(shù)為
,求
的分布列以及數(shù)學(xué)期望.下面的臨界值表供參考:
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直四棱柱中,底面
為菱形,
且側(cè)棱
其中
為
的
交點(diǎn).
(1)求點(diǎn)到平面
的距離;
(2)在線段上,是否存在一個(gè)點(diǎn)
,使得直線
與
垂直?若存在,求出線段
的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com