如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點(diǎn)B到平面MAC的距離.
(1)證明過程詳見解析;(2)二面角的余弦值為
;(3)
.
解析試題分析:本題考查空間兩條直線的位置關(guān)系、二面角、點(diǎn)到平面的距離等基礎(chǔ)知識(shí),考查運(yùn)用傳統(tǒng)幾何法,也可以運(yùn)用空間向量法求解,突出考查空間想象能力和計(jì)算能力.第一問,根據(jù)線面平行的判定定理得到平面
,所以
垂直于面內(nèi)的任意線;第二問,法一:先找出二面角
的平面角,取
的中點(diǎn)
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bc/e/1ulnh3.png" style="vertical-align:middle;" />,所以
,由三垂線定理得
,所以得到二面角
的平面角為
,由已知得
,在
中用余弦定理求
,在
、
、
、
中求邊長(zhǎng),最后在
中
即是二面角的余弦值.法二:用向量法,建立空間直角坐標(biāo)系,設(shè)出
點(diǎn)坐標(biāo),因?yàn)橹本
與直線
所成的角為
,利用夾角公式,先得到
點(diǎn)坐標(biāo),再求出平面
的法向量
,所以求
與
的夾角的余弦,并判斷夾角為銳角,所以余弦值為正值;第三問,先找線段
的中點(diǎn)
到平面
的距離,利用線面垂直的判定定理,得到
即是,用等面積法求
,所以點(diǎn)
到平面
的距離是點(diǎn)
到平面
的距離的兩倍.
試題解析:方法1:(1)證明:∵,
,∴
平面
,∴
.(2分)
(2)取的中點(diǎn)
,連
.∵
,∴
,∴
平面
.
作,交
的延長(zhǎng)線于
,連接
.
由三垂線定理得,∴
為二面角
的平面角.
∵直線與直線
所成的角為
,
∴在中,
.
在中,
.
在中,
.
在中,
.
在中,∵
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在長(zhǎng)方體中,
為線段
中點(diǎn).
(1)求直線與直線
所成的角的余弦值;
(2)若,求二面角
的大。
(3)在棱上是否存在一點(diǎn)
,使得
平面
?若存在,求
的長(zhǎng);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐P-ABCD,底面ABCD是、邊長(zhǎng)為
的菱形,又
,且PD=CD,點(diǎn)M、N分別是棱AD、PC的中點(diǎn).
(1)證明:MB平面PAD;
(2)求點(diǎn)A到平面PMB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,平面
,四邊形
為正方形,且
,
分別是線段
的中點(diǎn).
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面
;
(Ⅲ)求三棱錐與四棱錐
的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,面
面
,底面
是直角梯形,側(cè)面
是等腰直角三角形.且
∥
,
,
,
.
(1)判斷與
的位置關(guān)系;
(2)求三棱錐的體積;
(3)若點(diǎn)是線段
上一點(diǎn),當(dāng)
//平面
時(shí),求
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,邊長(zhǎng)為2的正方形ABCD,E,F分別是AB,BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于.
(1)求證:⊥EF;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在斜三棱柱中,側(cè)面
⊥底面
,側(cè)棱
與底面
成
的角,
.底面
是邊長(zhǎng)為2的正三角形,其重心為
點(diǎn),
是線段
上一點(diǎn),且
.
(Ⅰ)求證://側(cè)面
;
(Ⅱ)求平面與底面
所成銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,平面
平面
,
,
是等邊三角形,已知
.
(1)設(shè)是
上的一點(diǎn),證明:平面
平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐A-BCD中,平行于BC的平面MNPQ分別交AB、AC、CD、BD于M、N、P、Q四點(diǎn),且MN=PQ.
(1)求證:四邊形為平行四邊形;
(2)試在直線AC上找一點(diǎn)F,使得.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com