日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          已知函數時都取得極值
          (1)求的值與函數的單調區(qū)間
          (2)若對,不等式恒成立,求的取值范圍 

          (1) 遞增區(qū)間是,遞減區(qū)間是;(2).

          解析試題分析:(1)求出f′(x),因為函數在x=-
          與x=1時都取得極值,所以得到f′(-)=0且f′(1)=0聯立解得a與b的值,然后把a、b的值代入求得f(x)及f′(x),然后討論導函數的正負得到函數的增減區(qū)間;
          (2)根據(1)函數的單調性,由于x∈[-1,2]恒成立求出函數的最大值值為f(2),代入求出最大值,然后令f(2)<c2列出不等式,求出c的范圍即可..
          試題解析:解:(1)    1分;
          ,  3分;
          ,函數的單調區(qū)間如下表:

           




           

           


           


           
           

          ­
          極大值
          ¯
          極小值
          ­
          所以函數的遞增區(qū)間是,遞減區(qū)間是;  6分;
          (2),當時,
          為極大值,而,則為最大值,          9分;
          要使恒成立,則只需要,      10分;
                                     12分;
          考點:1.利用導數研究函數的極值;2.函數恒成立問題;3.利用導數研究函數的單調性..

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:解答題

          是函數的兩個極值點,其中.
          (1)求的取值范圍;
          (2)若為自然對數的底數),求的最大值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          已知函數,
          (1)求在點(1,0)處的切線方程;
          (2)判斷在區(qū)間上的單調性;
          (3)證明:上恒成立.

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          已知函數
          (1)若,討論函數在區(qū)間上的單調性;
          (2)若且對任意的,都有恒成立,求實數的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          某廠生產產品x件的總成本(萬元),已知產品單價P(萬元)與產品件數x滿足:,生產100件這樣的產品單價為50萬元,產量定為多少件時總利潤最大?

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          已知函數
          (1)當時,求函數在點(1,1)處的切線方程;
          (2)若在y軸的左側,函數的圖象恒在的導函數圖象的上方,求k的取值范圍;
          (3)當k≤-l時,求函數在[k,l]上的最小值m。

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          已知函數上是單調遞減函數,
          方程無實根,若“”為真,“”為假,求的取值范圍。

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          已知函數f(x)="xlnx" (x 1)(ax a+1)(a∈R).
          (1)若a=0,判斷f(x)的單調性;.
          (2)若x>1時,f(x)<0恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          已知函數,其中.
          (1)若,求函數的極值點;
          (2)若在區(qū)間內單調遞增,求實數的取值范圍.

          查看答案和解析>>

          同步練習冊答案