【題目】已知橢圓右焦點(diǎn)
,離心率為
,過(guò)
作兩條互相垂直的弦
,設(shè)
中點(diǎn)分別為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)證明:直線必過(guò)定點(diǎn),并求出此定點(diǎn)坐標(biāo).
【答案】(1)(2)
【解析】
(1)根據(jù)題意確定出c與e的值,利用離心率公式求出a的值,進(jìn)而求出b的值,確定出橢圓方程即可;
(2)由直線AB與CD向量存在,設(shè)為k,表示出AB方程,設(shè)出A與B坐標(biāo),進(jìn)而表示出M坐標(biāo),聯(lián)立直線AB與橢圓方程,消去y得到關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系表示出M,同理表示出N,根據(jù)M與N橫坐標(biāo)相同求出k的值,得到此時(shí)MN斜率不存在,直線MN恒過(guò)定點(diǎn);若直線MN斜率存在,表示出直線MN斜率,進(jìn)而表示出直線MN,令y=0,求出x的值,得到直線MN恒過(guò)定點(diǎn),綜上,得到直線MN恒過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo)即可;
解:(1) 由題意:,
∴,
則橢圓的方程為
(2) ∵斜率均存在
∴設(shè)直線方程為:
,
再設(shè),則有
,
聯(lián)立得:,
消去得:
,
∴,即
,
將上式中的換成
,同理可得:
,
若,解得:
,直線
斜率不存在,
此時(shí)直線過(guò)點(diǎn)
;
下證動(dòng)直線過(guò)定點(diǎn)
,
若直線斜率存在,則
,
直線為
,
令,得
,
綜上,直線過(guò)定點(diǎn)
;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:
,一動(dòng)直線l過(guò)
與圓
相交于
.兩點(diǎn),
是
中點(diǎn),l與直線m:
相交于
.
(1)求證:當(dāng)l與m垂直時(shí),l必過(guò)圓心;
(2)當(dāng)時(shí),求直線l的方程;
(3)探索是否與直線l的傾斜角有關(guān),若無(wú)關(guān),請(qǐng)求出其值;若有關(guān),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以,
,
,
,
,
,
分組的頻率分布直方圖如圖所示.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,
,
的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在
的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若存在實(shí)數(shù)
,使得等式
對(duì)于定義域內(nèi)的任意實(shí)數(shù)
均成立,則稱(chēng)函數(shù)
為“可平衡”函數(shù),有序數(shù)對(duì)
稱(chēng)為函數(shù)
的“平衡”數(shù)對(duì).
(1)若,判斷
是否為“可平衡”函數(shù),并說(shuō)明理由;
(2)若且
,
均為
的“可平衡”數(shù)對(duì),當(dāng)
時(shí),方程
有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓.
(1)若直線過(guò)點(diǎn)
且被圓
截得的弦長(zhǎng)為2,求直線
的方程;
(2)從圓外一點(diǎn)
向圓
引一條切線,切點(diǎn)為
為坐標(biāo)原點(diǎn),滿足
,求點(diǎn)
的軌跡方程及
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的焦距為2
,左頂點(diǎn)與上頂點(diǎn)連線的斜率為
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)P(m,0)作圓x2+y2=1的一條切線l交橢圓C于M,N兩點(diǎn),當(dāng)|MN|的值最大時(shí),求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面
為平行四邊形,
底面
,
是棱
的中點(diǎn),
且.
(1)求證: 平面
;
(2)如果是棱
上一點(diǎn),且直線
與平面
所成角的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年,隨著中國(guó)第一款5G手機(jī)投入市場(chǎng),5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過(guò)數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬(wàn)臺(tái),其總成本為
,其中固定成本為800萬(wàn)元,并且每生產(chǎn)1萬(wàn)臺(tái)的生產(chǎn)成本為1000萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷(xiāo)售收入
萬(wàn)元滿足
(1)將利潤(rùn)表示為產(chǎn)量
萬(wàn)臺(tái)的函數(shù);
(2)當(dāng)產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形和矩形
所在的平面互相垂直,
,
,
是線段
的中點(diǎn).
(1)求證:平面
;
(2)求二面角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com