數(shù)學(xué)英語物理化學(xué) 生物地理
數(shù)學(xué)英語已回答習(xí)題未回答習(xí)題題目匯總試卷匯總
【題目】函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ< )的部分圖象如圖所示,將f(x)的圖象向左平移 個(gè)單位后的解析式為( ) A.y=2sin(2x﹣ )B.y=2sin(2x+ )C.y=2sin(2x)D.y=2sin(2x+ )
【答案】C【解析】解:根據(jù)函數(shù)f(x)=2sin(ωx+φ)的部分圖象知, T= ﹣(﹣ )= π,解得T=π;∴ω= =2;根據(jù)五點(diǎn)法畫正弦函數(shù)圖象,知x= 時(shí),2× +φ= ,解得φ=﹣ ;∴f(x)=2sin(2x﹣ ),將f(x)的圖象向左平移 個(gè)單位后,得到y(tǒng)=2sin[2(x+ )﹣ ]=2sin(2x).故選:C.【考點(diǎn)精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[x]表示不超過x的最大整數(shù),例如:[π]=3. S1=[ ]+[ ]+[ ]=3S2=[ ]+[ ]+[ ]+[ ]+[ ]=10S3=[ ]+[ ]+[ ]+[ ]+[ ]+[ ]+ ]=21,…,依此規(guī)律,那么S10=( )A.210B.230C.220D.240
【題目】由于研究性學(xué)習(xí)的需要,中學(xué)生李華持續(xù)收集了手機(jī)“微信運(yùn)動(dòng)”團(tuán)隊(duì)中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下:
5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
對這20個(gè)數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表:
步數(shù)分組統(tǒng)計(jì)表(設(shè)步數(shù)為x)
組別
步數(shù)分組
頻數(shù)
A
5500≤x<6500
2
B
6500≤x<7500
10
C
7500≤x<8500
m
D
8500≤x<9500
E
9500≤x<10500
n
(Ⅰ)寫出m,n的值,若該“微信運(yùn)動(dòng)”團(tuán)隊(duì)共有120人,請估計(jì)該團(tuán)隊(duì)中一天行走步數(shù)不少于7500步的人數(shù);
(Ⅱ)記C組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v1, ,E組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v2, ,試分別比較v1與v2, 與的大;(只需寫出結(jié)論)
(Ⅲ)從上述A,E兩個(gè)組別的步數(shù)數(shù)據(jù)中任取2個(gè)數(shù)據(jù),求這2個(gè)數(shù)據(jù)步數(shù)差的絕對值大于3000步的概率.
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E,F(xiàn),G,H分別為AA1 , AB,BB1 , B1C1的中點(diǎn),則異面直線EF與GH所成的角等于( ) A.45°B.60°C.90°D.120°
【題目】設(shè)函數(shù)已知函數(shù)f(x)=x3+ax2+bx+c在x=﹣ 和x=1處取得極值.(1)求a,b的值及其單調(diào)區(qū)間;(2)若對x∈[﹣1,2]不等式f(x)≤c2恒成立,求c的取值范圍.
【題目】定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[﹣3,﹣2]上是減函數(shù),若α,β是銳角三角形的兩個(gè)內(nèi)角,則( )A.f(sinα)>f(sinβ)B.f(sinα)<f(cosβ)C.f(cosα)<f(cosβ)D.f(sinα)>f(cosβ)
【題目】已知函數(shù)f(x)=x3+ax2+(a+6)x+1有極大值和極小值,則a的取值范圍是 .
【題目】在四面體中, ,二面角 的余弦值是,則該四面體外接球的表面積是( )
A. B. C. D.
【題目】已知函數(shù)f(x)= ax2﹣(2a+1)x+2lnx(a≥0)(1)當(dāng)a=0時(shí),求f(x)的單調(diào)區(qū)間;(2)求y=f(x)在區(qū)間(0,2]上的最大值.
百度致信 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)