【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若對(duì)于任意的,若函數(shù)
在區(qū)間
上有最值,求實(shí)數(shù)
的取值范圍.
【答案】(I)當(dāng)時(shí),
的單調(diào)增區(qū)間為
,減區(qū)間為
,當(dāng)
時(shí),
的單調(diào)增區(qū)間為
,無減區(qū)間;(II)
.
【解析】
試題分析:(I)寫出函數(shù)定義域,求出導(dǎo)函數(shù),通過討論
的范圍,判斷
的符號(hào),求出單調(diào)區(qū)間;(II)
若
在區(qū)間
上有最值,則
在區(qū)間
上總不是單調(diào)函數(shù),由
由題意知,對(duì)任意
,
恒成立,
,因?yàn)?/span>
,
,又因?yàn)閷?duì)任意
,
恒成立,解得
.
試題解析:(I)由已知得的定義域?yàn)?/span>
,且
,
當(dāng)時(shí),
的單調(diào)增區(qū)間為
,減區(qū)間為
;
當(dāng)時(shí),
的單調(diào)增區(qū)間為
,無減區(qū)間;
(II),
在區(qū)間
上有最值,
在區(qū)間
上總不是單調(diào)函數(shù),
又
由題意知:對(duì)任意,
恒成立,
,因?yàn)?/span>
,
對(duì)任意,
恒成立
,
,
綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 橢圓的離心率是
,點(diǎn)
在橢圓上, 設(shè)點(diǎn)
分別是橢圓的右頂點(diǎn)和上頂點(diǎn), 過 點(diǎn)
引橢圓
的兩條弦
、
.
(1)求橢圓的方程;
(2)若直線與
的斜率是互為相反數(shù).
①直線的斜率是否為定值?若是求出該定值, 若不是,說明理由;
②設(shè)、
的面積分別為
和
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角梯形PBCD中,,
,
,A為PD的中點(diǎn),如圖.將△PAB沿AB折到△SAB的位置,使SB⊥BC,點(diǎn)E在SD上,且
,如圖.
(Ⅰ)求證:SA⊥平面ABCD;
(Ⅱ)求二面角E﹣AC﹣D的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)路上所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為
,
,
,
,
.
(1)求直方圖中的值;
(2)如果上學(xué)路上所需時(shí)間不少于40分鐘的學(xué)生可申請?jiān)趯W(xué)校住宿,請估計(jì)學(xué)校1000名新生中有多少名學(xué)生可以申請住宿.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2-a-lnx,其中a∈R.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)時(shí),
恒成立,求a的取值范圍.(其中,e=2.718…為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在三棱柱中,底面
是邊長為2的等邊三角形,
為
的中點(diǎn).
(Ⅰ)求證:;
(Ⅱ)若四邊形是正方形,且
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,以橢圓的一個(gè)短軸端點(diǎn)及兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
,圓C方程為
.
(1)求橢圓及圓C的方程;
(2)過原點(diǎn)O作直線l與圓C交于A,B兩點(diǎn),若,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex-ax-2.
(1)求f(x)的單調(diào)區(qū)間;
(2)若a=1,k為整數(shù),且當(dāng)x>0時(shí),(x-k)f′(x)+x+1>0,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分
沙漏是古代的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開始時(shí)細(xì)沙全部在上部容器中,細(xì)沙通過連接管道全部流到下部容器所需要的時(shí)間稱為該沙漏的一個(gè)沙時(shí)。如圖,某沙漏由上下兩個(gè)圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時(shí),其高度為圓錐高度的(細(xì)管長度忽略不計(jì)).
(1)如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個(gè)沙時(shí)為多少秒(精確到1秒)?
(2)細(xì)沙全部漏入下部后,恰好堆成個(gè)一蓋住沙漏底部的圓錐形沙堆,求此錐形沙堆的高度(精確到0.1cm).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com