【題目】中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對稱美,如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對稱統(tǒng)一的形式美、和諧美,給出定義:能夠?qū)AO的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”,給出下列命題:
①對于任意一個圓O,其“優(yōu)美函數(shù)”有無數(shù)個;
②函數(shù)f(x)=ln()可以是某個圓的“優(yōu)美函數(shù)”;
③函數(shù)y=1+sinx可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;
④函數(shù)y=2x+1可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;
⑤函數(shù)y=f(x)是“優(yōu)美函數(shù)”的充要條件為函數(shù)y=f(x)的圖象是中心對稱圖形.
其中正確的命題是_____.
【答案】①③④
【解析】
根據(jù)優(yōu)美函數(shù)的定義,經(jīng)過圓心的直線滿足①;對于函數(shù)根據(jù)其單調(diào)性且圖象為曲線可判斷②;當(dāng)圓心經(jīng)過
的中心時可判斷③;直線經(jīng)過圓心時可判斷④;舉出反例雙曲線可判斷⑤.
①對于任意一個圓,其過圓心的對稱軸由無數(shù)條,所以其“優(yōu)美函數(shù)”有無數(shù)個,故①正確;②函數(shù)
的定義域為
,在
上單調(diào)遞減,在
上單調(diào)遞增且圖象為曲線,故不可以是某個圓的“優(yōu)美函數(shù)”,故②不正確;③當(dāng)圓經(jīng)過函數(shù)
的對稱中心時,根據(jù)
的圖象可知可以將圓分成優(yōu)美函數(shù),圖象可以延伸,所以可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;④函數(shù)
只要過圓心,即可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;⑤函數(shù)
是“優(yōu)美函數(shù)”的充要條件為函數(shù)
的圖象是中心對稱圖形,不對,有些中心對稱圖形不一定是“優(yōu)美函數(shù)”,比如“雙曲線”;故答案為①③④.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著電子閱讀的普及,傳統(tǒng)紙質(zhì)媒體遭受到了強烈的沖擊.某雜志社近9年來的紙質(zhì)廣告收入如下表所示:
根據(jù)這9年的數(shù)據(jù),對和
作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.243;
根據(jù)后5年的數(shù)據(jù),對和
作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.984.
(1)如果要用線性回歸方程預(yù)測該雜志社2019年的紙質(zhì)廣告收入,現(xiàn)在有兩個方案,
方案一:選取這9年數(shù)據(jù)進(jìn)行預(yù)測,方案二:選取后5年數(shù)據(jù)進(jìn)行預(yù)測.
從實際生活背景以及線性相關(guān)性檢驗的角度分析,你覺得哪個方案更合適?
附:相關(guān)性檢驗的臨界值表:
(2)某購物網(wǎng)站同時銷售某本暢銷書籍的紙質(zhì)版本和電子書,據(jù)統(tǒng)計,在該網(wǎng)站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質(zhì)版本和電子書同時購買的讀者比例為
,現(xiàn)用此統(tǒng)計結(jié)果作為概率,若從上述讀者中隨機調(diào)查了3位,求購買電子書人數(shù)多于只購買紙質(zhì)版本人數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
,過
的直線
與
軸交于
點,與
軸交于
點,記
與坐標(biāo)軸圍成的三角形
的面積為
.
(1)若,且
,求直線
的方程;
(2)若、
都在正半軸上,求
的最小值;
(3)寫出面積的取值范圍與直線
條數(shù)的對應(yīng)關(guān)系.(不需要證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù)
,數(shù)列
為等差數(shù)列,且公差不為0,若
,則
( )
A. 45B. 15C. 10D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右焦點分別為
,上頂點為
,過點
與
垂直的直線交
軸負(fù)半軸于點
,且
恰是
的中點,若過
三點的圓恰好與直線
相切.
(1)求橢圓的方程;
(2)若直線與橢圓
交于
兩點,在
軸上是否存在點
,使得以
為鄰邊的平行四邊形是菱形?如果存在,求出
的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
是平行四邊形,
平面
,
,
,
是棱
上的一點.
(1)證明:平面
;
(2)若平面
,求
的值;
(3)在(2)的條件下,三棱錐的體積是18,求
點到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的長軸長為4,焦距為
(Ⅰ)求橢圓的方程;
(Ⅱ)過動點的直線交
軸與點
,交
于點
(
在第一象限),且
是線段
的中點.過點
作
軸的垂線交
于另一點
,延長
交
于點
.
(ⅰ)設(shè)直線的斜率分別為
,證明
為定值;
(ⅱ)求直線的斜率的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,
,
,
,
平面
.
(1)求證: 平面
;
(2)若為線段
的中點,且過
三點的平面與線段
交于點
,確定點
的位置,說明理由;并求三棱錐
的高.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com