日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四棱錐中,底面是正方形,側(cè)棱⊥底面,,的中點(diǎn),作于點(diǎn)

          (1)證明平面;
          (2)證明平面

          (1)見(jiàn)解析(2)見(jiàn)解析

          解析試題分析:(1)連接AC,AC交BD于O.連接EO.根據(jù)正方形的性質(zhì),得EO是△PAC的中位線,得PA∥EO,從而得到PA∥平面EDB;
          (2)過(guò)F點(diǎn)作FG⊥PC于G,可得FG⊥平面PDE,F(xiàn)G是點(diǎn)F到平面PDE的距離.等腰Rt△PDC中,算出PE長(zhǎng)和△PED的面積,再利用三角形相似算出PF和FG的長(zhǎng),最后用錐體體積公式,可算出三棱錐P-DEF的體積.
          試題解析:方法一:
          (1)證明:連結(jié)AC,AC交BD于O,連結(jié)EO。
          ∵底面ABCD是正方形,∴點(diǎn)O是AC的中點(diǎn)
          中,EO是中位線,∴PA//EO
          平面EDB且平面EDB,
          所以,PA//平面EDB

          (2)證明:
          ∵PD⊥底面ABCD且底面ABCD,∴
          ∵PD=DC,可知是等腰直角三角形,而DE是斜邊PC的中線,
          。   ①
          同樣由PD⊥底面ABCD,得PD⊥BC。
          ∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC。
          平面PDC,∴。   ②
          由①和②推得平面PBC。
          平面PBC,∴
          ,所以PB⊥平面EFD。
          方法二:如圖所示建立空間直角坐標(biāo)系,D為坐標(biāo)原點(diǎn),設(shè)。
          (1)證明:連結(jié)AC,AC交BD于G,連結(jié)EG。
          依題意得。
          ∵底面ABCD是正方形,∴G是此正方形的中心,故點(diǎn)G的坐標(biāo)為

          ,這表明PA//EG。
          平面EDB且平面EDB,∴PA//平面EDB。

          (2)證明;依題意得,。又,故。
          .
          由已知,且,所以平面EFD.
          考點(diǎn):直線與平面平行的判定與性質(zhì),二面角,直線與平面垂直的判定與性質(zhì)

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且,的中點(diǎn),上的點(diǎn).
          (1)求異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示);
          (2)若,求線段的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且底面ABCD,,E是PA的中點(diǎn).

          (1)求證:平面平面EBD;
          (2)若PA=AB=2,直線PB與平面EBD所成角的正弦值為,求四棱錐P-ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在如圖所示的幾何體中,四邊形為平行四邊形,,平面,,.

          (1)若是線段的中點(diǎn),求證:平面;
          (2)若,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,三棱柱中,側(cè)棱平面為等腰直角三角形,,且分別是的中點(diǎn).

          (1)求證:平面;
          (2)求銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在四棱錐中,//,,平面,.

          (1)求證:平面
          (2)求異面直線所成角的余弦值;
          (3)設(shè)點(diǎn)為線段上一點(diǎn),且直線與平面所成角的正弦值為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知四棱錐的底面為直角梯形,,底面,且的中點(diǎn).
          ⑴求證:直線平面;
          ⑵⑵若直線與平面所成的角為,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,四棱錐中,,、分別為、的中點(diǎn),,.

          (1)證明:∥面
          (2)求面與面所成銳角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖所示,四棱錐P—ABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M為PC的中點(diǎn)。

          (1)求證:BM∥平面PAD;
          (2)在側(cè)面PAD內(nèi)找一點(diǎn)N,使MN平面PBD;
          (3)求直線PC與平面PBD所成角的正弦。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案