日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且,的中點(diǎn),上的點(diǎn).
          (1)求異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示);
          (2)若,求線段的長(zhǎng).

          (1),(2).

          解析試題分析:(1)求異面直線所成角,關(guān)鍵在于利用平行,將所求角轉(zhuǎn)化為某一三角形中的內(nèi)角.因?yàn)闂l件有中點(diǎn),所以從中位線上找平行. 取的中點(diǎn),連,則,即即為異面直線所成的角.分別求出三角形三邊,再利用余弦定理求角. ,,,,(2)求線段長(zhǎng),可利用空間向量坐標(biāo)進(jìn)行計(jì)算. 設(shè)的長(zhǎng)為,,,由可得,∴線段的長(zhǎng)為
          解:(1)取的中點(diǎn),連,則,即即為異面直線所成的角.   (2分)
          .
          中,由,

          中,由, (4分)
          中,
             (6分)
          (2)以為原點(diǎn),建立如圖空間直角坐標(biāo)系,設(shè)的長(zhǎng)為
          則各點(diǎn)的坐標(biāo)為,,, (2分)
          ,
             (4分)
          ,解得
          ∴線段的長(zhǎng)為   (6分)
          考點(diǎn):平移求線線角,利用空間向量求長(zhǎng)度

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖所示,正方形與矩形所在平面互相垂直,,點(diǎn)的中點(diǎn).
          (1)求證:∥平面;(2)求證:;
          (3)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在三棱柱中,平面,為棱上的動(dòng)點(diǎn),.
          ⑴當(dāng)的中點(diǎn),求直線與平面所成角的正弦值;
          ⑵當(dāng)的值為多少時(shí),二面角的大小是45.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在如圖所示的多面體中,底面BCFE是梯形,EF//BC,又EF平面AEB,AEEB,AD//EF,BC=2AD=4,EF=3,AE=BE=2,G為BC的中點(diǎn).
          (1)求證:AB//平面DEG;
          (2)求證:BDEG;
          (3)求二面角C—DF—E的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知空間三點(diǎn)A(0,2,3),B(-2,1,6),C(1,-1,5).
          (1)求以,為邊的平行四邊形的面積;
          (2)若|a|=,且a分別與,垂直,求向量a的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在直三棱柱中,已知,

          (1)求異面直線夾角的余弦值;
          (2)求二面角平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在四棱錐中,底面是正方形,側(cè)棱⊥底面,,的中點(diǎn),作于點(diǎn)

          (1)證明平面
          (2)證明平面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

          已知向量,且A、B、C三點(diǎn)共線,
          則k=            

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
          (1)證明:PB∥平面AEC;
          (2)設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案