日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】網(wǎng)購是現(xiàn)在比較流行的一種購物方式,現(xiàn)隨機調(diào)查50名個人收入不同的消費者是否喜歡網(wǎng)購,調(diào)查結果表明:在喜歡網(wǎng)購的25人中有18人是低收入的人,另外7人是高收入的人,在不喜歡網(wǎng)購的25人中有6人是低收入的人,另外19人是高收入的人.

          喜歡網(wǎng)購

          不喜歡網(wǎng)購

          總計

          低收入的人

          高收入的人

          總計

          (Ⅰ)試根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并用獨立性檢驗的思想,指出有多大把握認為是否喜歡網(wǎng)購與個人收入高低有關系;

          (Ⅱ)將5名喜歡網(wǎng)購的消費者編號為1、23、4、5,將5名不喜歡網(wǎng)購的消費者編號也記作12、34、5,從這兩組人中各任選一人進行交流,求被選出的2人的編號之和為2的倍數(shù)的概率.

          參考公式:

          參考數(shù)據(jù):

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          【答案】(Ⅰ)填表見解析,有的把握認為是否喜歡網(wǎng)購與個人收入高低有關系;

          (Ⅱ).

          【解析】

          (Ⅰ)根據(jù)題目所給數(shù)據(jù)填寫好列聯(lián)表,計算的值,由此判斷出有的把握認為是否喜歡網(wǎng)購與個人收入高低有關系.

          (Ⅱ)利用分步乘法計數(shù)原理、分類加法計數(shù)原理,結合古典概型概率計算公式,計算出所求概率.

          (Ⅰ)列聯(lián)表如下:

          喜歡網(wǎng)購

          不喜歡網(wǎng)購

          總計

          低收入的人

          18

          6

          24

          高收入的人

          7

          19

          26

          總計

          25

          25

          50

          ,假設喜歡網(wǎng)購與個人收入高低沒有關系,則;

          故有的把握認為是否喜歡網(wǎng)購與個人收入高低有關系;

          (Ⅱ)由題意,共有種情況.

          和為2的有1種,和為4的有3種,和為6的有5種,和為8的有3種,和為10的有1種,

          故被選出的2人的編號之和為2的倍數(shù)概率為.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù) 。

          (1)當時,討論的單調(diào)性;

          (2)若在點處的切線方程為,若對任意的

          恒有,求的取值范圍(是自然對數(shù)的底數(shù))。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱錐中,底面為正方形,底面,為線段的中點.

          1)若為線段上的動點,證明:平面平面

          2)若為線段,,上的動點(不含),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】朱載堉(1536—1611),明太祖九世孫,音樂家、數(shù)學家、天文歷算家,在他多達百萬字的著述中以《樂律全書》最為著名,在西方人眼中他是大百科全書式的學者王子。他對文藝的最大貢獻是他創(chuàng)建了“十二平均律”,此理論被廣泛應用在世界各國的鍵盤樂器上,包括鋼琴,故朱載堉被譽為“鋼琴理論的鼻祖”!笆骄伞笔侵敢粋八度有13個音,相鄰兩個音之間的頻率之比相等,且最后一個音頻率是最初那個音頻率的2倍,設第二個音的頻率為,第八個音的頻率為,則等于( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某市交通管理部門為了解市民對機動車“單雙號限行”的態(tài)度,隨機采訪了100名市民,將他們的意見和是否擁有私家車的情況進行了統(tǒng)計,得到了如下的列聯(lián)表:

          贊同限行

          不贊同限行

          合計

          沒有私家車

          15

          有私家車

          45

          合計

          100

          已知在被采訪的100人中隨機抽取1人且抽到“贊同限行”者的概率是.

          (1)請將上面的列聯(lián)表補充完整;

          (2)根據(jù)上面的列聯(lián)表判斷能否在犯錯誤的概率不超過0.10的前提下認為“對限行的態(tài)度與是否擁有私家車有關”;

          (3)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該市大量市民中,采用隨機抽樣方法每次抽取1名市民,抽取3次,記被抽取的3名市民中的“贊同限行”人數(shù)為.若每次抽取的結果是相互獨立的,求的分布列、期望和方差.

          附:參考公式:,其中.

          臨界值表:

          0.15

          0.10

          0.05

          0.025

          0.10

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,矩形中,的中點,將沿直線翻折成,連結,的中點,則在翻折過程中,下列說法中所有正確的是(

          A.存在某個位置,使得

          B.翻折過程中,的長是定值

          C.,則

          D.,當三棱錐的體積最大時,三棱錐的外接球的表面積是

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】對任意正整數(shù),若存在數(shù)列,滿足,其中,則稱數(shù)列為正整數(shù)的生成數(shù)列,記為.

          1)寫出2018的生成數(shù)列;

          2)求證:對任意正整數(shù),存在唯一的生成數(shù)列

          3)求生成數(shù)列的所有項的和.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知,分別為雙曲線的左、右焦點,點P是以為直徑的圓與C在第一象限內(nèi)的交點,若線段的中點QC的漸近線上,則C的兩條漸近線方程為__________

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,點O為對角線BD的中點,點E,F(xiàn)分別為棱PC,PD的中點,已知PA⊥AB,PA⊥AD.

          (1)求證:直線PB∥平面OEF;

          (2)求證:平面OEF⊥平面ABCD.

          查看答案和解析>>

          同步練習冊答案