日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四棱錐中,底面為正方形,底面,為線段的中點(diǎn).

          1)若為線段上的動(dòng)點(diǎn),證明:平面平面

          2)若為線段,上的動(dòng)點(diǎn)(不含,),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請(qǐng)說明理由.

          【答案】(1)證明見解析;(2)存在,.

          【解析】

          (1)利用,可得平面,根據(jù)面面垂直的判定定理可證平面平面;

          (2)底面,得平面平面.將問題轉(zhuǎn)化為點(diǎn)到直線的距離有無最大值即可解決.

          1)證明:因?yàn)?/span>為線段的中點(diǎn),所以,

          因?yàn)?/span>底面,平面,所以,

          又因?yàn)榈酌?/span>為正方形,所以,,

          所以平面,

          因?yàn)?/span>平面,所以,

          因?yàn)?/span>,所以平面,

          因?yàn)?/span>平面,所以平面平面.

          2)由底面,則平面平面,

          所以點(diǎn)到平面的距離(三棱錐的高)等于點(diǎn)到直線的距離,

          因此,當(dāng)點(diǎn)在線段,上運(yùn)動(dòng)時(shí),三棱錐的高小于或等于2,

          當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),三棱錐的高為2,

          因?yàn)?/span>的面積為,

          所以當(dāng)點(diǎn)在線段上,三棱錐的體積取得最大值,

          最大值為.

          由于三棱錐的體積等于三棱錐的體積,

          所以三棱錐的體積存在最大值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】天干地支紀(jì)年法,源于中國(guó),中國(guó)自古便有十天干與十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀(jì)年法是按順序以一個(gè)天干和一個(gè)地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推,排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”,“乙亥”,之后地支回到“子”重新開始,即“丙子”,…,以此類推,已知2016年為丙申年,那么到改革開放100年時(shí),即2078年為________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的極大值為16,極小值為-16.

          1)求的值;

          2)若過點(diǎn)可作三條不同的直線與曲線相切,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)m,n為平面α外兩條直線,其在平面α內(nèi)的射影分別是兩條直線m1和n1,給出下列4個(gè)命題:①m1∥n1m∥n;②m∥nm1與n1平行或重合;③m1⊥n1m⊥n;④m⊥nm1⊥n1.其中所有假命題的序號(hào)是_____

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)若為單調(diào)函數(shù),求a的取值范圍;

          2)若函數(shù)僅一個(gè)零點(diǎn),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)fx)=6cos2sinωx3ω0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B,C為圖象與x軸的交點(diǎn),且△ABC為正三角形

          1)求ω的值及函數(shù)fx)的表達(dá)式;

          2)若fx0,且x0∈(),求fx0+1)的值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面,,.

          1)證明:平面;

          2)若四棱錐的體積為,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】網(wǎng)購(gòu)是現(xiàn)在比較流行的一種購(gòu)物方式,現(xiàn)隨機(jī)調(diào)查50名個(gè)人收入不同的消費(fèi)者是否喜歡網(wǎng)購(gòu),調(diào)查結(jié)果表明:在喜歡網(wǎng)購(gòu)的25人中有18人是低收入的人,另外7人是高收入的人,在不喜歡網(wǎng)購(gòu)的25人中有6人是低收入的人,另外19人是高收入的人.

          喜歡網(wǎng)購(gòu)

          不喜歡網(wǎng)購(gòu)

          總計(jì)

          低收入的人

          高收入的人

          總計(jì)

          (Ⅰ)試根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并用獨(dú)立性檢驗(yàn)的思想,指出有多大把握認(rèn)為是否喜歡網(wǎng)購(gòu)與個(gè)人收入高低有關(guān)系;

          (Ⅱ)將5名喜歡網(wǎng)購(gòu)的消費(fèi)者編號(hào)為1、2、3、4、5,將5名不喜歡網(wǎng)購(gòu)的消費(fèi)者編號(hào)也記作1、2、3、45,從這兩組人中各任選一人進(jìn)行交流,求被選出的2人的編號(hào)之和為2的倍數(shù)的概率.

          參考公式:

          參考數(shù)據(jù):

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地要建造一個(gè)邊長(zhǎng)為2(單位:)的正方形市民休閑公園,將其中的區(qū)域開挖成一個(gè)池塘,如圖建立平面直角坐標(biāo)系后,點(diǎn)的坐標(biāo)為,曲線是函數(shù)圖像的一部分,過邊上一點(diǎn)在區(qū)域內(nèi)作一次函數(shù))的圖像,與線段交于點(diǎn)(點(diǎn)不與點(diǎn)重合),且線段與曲線有且只有一個(gè)公共點(diǎn),四邊形為綠化風(fēng)景區(qū).

          1)求證:;

          2)設(shè)點(diǎn)的橫坐標(biāo)為,

          ①用表示兩點(diǎn)的坐標(biāo);

          ②將四邊形的面積表示成關(guān)于的函數(shù),并求的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案