日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】朱載堉(1536—1611),明太祖九世孫,音樂家、數(shù)學(xué)家、天文歷算家,在他多達(dá)百萬字的著述中以《樂律全書》最為著名,在西方人眼中他是大百科全書式的學(xué)者王子。他對文藝的最大貢獻(xiàn)是他創(chuàng)建了“十二平均律”,此理論被廣泛應(yīng)用在世界各國的鍵盤樂器上,包括鋼琴,故朱載堉被譽為“鋼琴理論的鼻祖”。“十二平均律”是指一個八度有13個音,相鄰兩個音之間的頻率之比相等,且最后一個音頻率是最初那個音頻率的2倍,設(shè)第二個音的頻率為,第八個音的頻率為,則等于( )

          A. B. C. D.

          【答案】A

          【解析】

          依題意13個音的頻率成等比數(shù)列,記為{an},設(shè)公比為q,推導(dǎo)出q=,由此能求出的值.

          依題意13個音的頻率成等比數(shù)列,記為{an},設(shè)公比為q,

          =,且=2a1,∴q=

          ==q6=

          故選:A.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點分別為、,橢圓的離心率為,過橢圓的左焦點,且斜率為的直線,與以右焦點為圓心,半徑為的圓相切.

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)線段是橢圓過右焦點的弦,且,求的面積的最大值以及取最大值時實數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)m,n為平面α外兩條直線,其在平面α內(nèi)的射影分別是兩條直線m1和n1,給出下列4個命題:①m1∥n1m∥n;②m∥nm1與n1平行或重合;③m1⊥n1m⊥n;④m⊥nm1⊥n1.其中所有假命題的序號是_____

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)fx)=6cos2sinωx3ω0)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點,B,C為圖象與x軸的交點,且△ABC為正三角形

          1)求ω的值及函數(shù)fx)的表達(dá)式;

          2)若fx0,且x0∈(),求fx0+1)的值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面,,.

          1)證明:平面;

          2)若四棱錐的體積為,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù)是自然對數(shù)的底數(shù))在的定義域上單調(diào)遞增,則稱函數(shù)具有性質(zhì).下列函數(shù)中所有具有性質(zhì)的函數(shù)的序號為(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】網(wǎng)購是現(xiàn)在比較流行的一種購物方式,現(xiàn)隨機調(diào)查50名個人收入不同的消費者是否喜歡網(wǎng)購,調(diào)查結(jié)果表明:在喜歡網(wǎng)購的25人中有18人是低收入的人,另外7人是高收入的人,在不喜歡網(wǎng)購的25人中有6人是低收入的人,另外19人是高收入的人.

          喜歡網(wǎng)購

          不喜歡網(wǎng)購

          總計

          低收入的人

          高收入的人

          總計

          (Ⅰ)試根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并用獨立性檢驗的思想,指出有多大把握認(rèn)為是否喜歡網(wǎng)購與個人收入高低有關(guān)系;

          (Ⅱ)將5名喜歡網(wǎng)購的消費者編號為1、23、45,將5名不喜歡網(wǎng)購的消費者編號也記作1、23、4、5,從這兩組人中各任選一人進(jìn)行交流,求被選出的2人的編號之和為2的倍數(shù)的概率.

          參考公式:

          參考數(shù)據(jù):

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線經(jīng)過點,曲線的直角坐標(biāo)方程為.

          1)求曲線的普通方程,曲線的極坐標(biāo)方程;

          2)若,是曲線上兩點,當(dāng)時,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) F (x) = e x 滿足 F ( x) = g ( x) + h( x) ,且 g ( x), h( x) 分別是定義在 R 上的偶函數(shù)和奇函數(shù).

          1)求函數(shù) h(x)的反函數(shù);

          2)已知(x) = g(x 1),若函數(shù)(x) [1,3]上滿足(2 a+1) ,求實數(shù) a 的取值范圍;

          3)若對于任意 x (0,2]不等式 g(2x) ah(x) ≥ 0 恒成立,求實數(shù) a 的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案