日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)

          (1)當(dāng)時(shí),討論的單調(diào)性;

          (2)若在點(diǎn)處的切線方程為,若對(duì)任意的

          恒有,求的取值范圍(是自然對(duì)數(shù)的底數(shù))。

          【答案】(1) 當(dāng)時(shí), 上單調(diào)遞增;當(dāng)時(shí), 上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí), 上單調(diào)遞增,在上單調(diào)遞減;(2)

          【解析】試題分析

          (1)求導(dǎo)數(shù)三種情況分別討論導(dǎo)函數(shù)的符號(hào),從而得到函數(shù)的單調(diào)情況。(2)根據(jù)導(dǎo)數(shù)的幾何意義可得,從而。故由題意得對(duì)任意的恒成立。設(shè), 根據(jù)單調(diào)性可求得,從而可得。

          試題解析

          (1)當(dāng)時(shí), ,

          所以。

          ,解得,

          ①當(dāng)時(shí), ,所以上單調(diào)遞增;

          ②當(dāng)時(shí), ,列表得:

          所以上單調(diào)遞增,在上單調(diào)遞減;

          ③當(dāng)時(shí), ,列表得:

          所以上單調(diào)遞增,在上單調(diào)遞減。

          綜上可得,當(dāng)時(shí), 上單調(diào)遞增;

          當(dāng)時(shí), 上單調(diào)遞增,在上單調(diào)遞減;

          當(dāng)時(shí), 上單調(diào)遞增,在上單調(diào)遞減。

          (2)因?yàn)?/span>,

          所以,

          由題意得,

          整理得,解得

          所以

          因?yàn)?/span>對(duì)任意的恒成立,

          所以對(duì)任意的恒成立

          設(shè),

          ,

          所以當(dāng)時(shí), 單調(diào)遞減,

          當(dāng)時(shí), 單調(diào)遞增。

          因?yàn)?/span>

          所以,

          所以

          解得。

          所以實(shí)數(shù)的取值范圍為。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐 中,平面,底面為菱形,且,的中點(diǎn).

          1)證明:平面;

          2)若,,求平面與平面所成銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】天干地支紀(jì)年法,源于中國,中國自古便有十天干與十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀(jì)年法是按順序以一個(gè)天干和一個(gè)地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推,排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”,“乙亥”,之后地支回到“子”重新開始,即“丙子”,…,以此類推,已知2016年為丙申年,那么到改革開放100年時(shí),即2078年為________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點(diǎn)分別為、,橢圓的離心率為,過橢圓的左焦點(diǎn),且斜率為的直線,與以右焦點(diǎn)為圓心,半徑為的圓相切.

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)線段是橢圓過右焦點(diǎn)的弦,且,求的面積的最大值以及取最大值時(shí)實(shí)數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐中,,二面角的大小為120°,點(diǎn)在棱上,且,點(diǎn)的重心.

          1)證明:平面;

          2)求二面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(12分)若數(shù)列{an}是的遞增等差數(shù)列,其中的a3=5,且a1,a2,a5成等比數(shù)列,

          (1)求{an}的通項(xiàng)公式;

          (2)設(shè)bn= ,求數(shù)列{bn}的前項(xiàng)的和Tn

          (3)是否存在自然數(shù)m,使得 <Tn對(duì)一切nN*恒成立?若存在,求出m的值;

          若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的極大值為16,極小值為-16.

          1)求的值;

          2)若過點(diǎn)可作三條不同的直線與曲線相切,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)m,n為平面α外兩條直線,其在平面α內(nèi)的射影分別是兩條直線m1和n1,給出下列4個(gè)命題:①m1∥n1m∥n;②m∥nm1與n1平行或重合;③m1⊥n1m⊥n;④m⊥nm1⊥n1.其中所有假命題的序號(hào)是_____

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】網(wǎng)購是現(xiàn)在比較流行的一種購物方式,現(xiàn)隨機(jī)調(diào)查50名個(gè)人收入不同的消費(fèi)者是否喜歡網(wǎng)購,調(diào)查結(jié)果表明:在喜歡網(wǎng)購的25人中有18人是低收入的人,另外7人是高收入的人,在不喜歡網(wǎng)購的25人中有6人是低收入的人,另外19人是高收入的人.

          喜歡網(wǎng)購

          不喜歡網(wǎng)購

          總計(jì)

          低收入的人

          高收入的人

          總計(jì)

          (Ⅰ)試根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并用獨(dú)立性檢驗(yàn)的思想,指出有多大把握認(rèn)為是否喜歡網(wǎng)購與個(gè)人收入高低有關(guān)系;

          (Ⅱ)將5名喜歡網(wǎng)購的消費(fèi)者編號(hào)為12、3、4、5,將5名不喜歡網(wǎng)購的消費(fèi)者編號(hào)也記作1、2、3、45,從這兩組人中各任選一人進(jìn)行交流,求被選出的2人的編號(hào)之和為2的倍數(shù)的概率.

          參考公式:

          參考數(shù)據(jù):

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          同步練習(xí)冊(cè)答案