【題目】已知函數(shù) 。
(1)當(dāng)時(shí),討論
的單調(diào)性;
(2)若在點(diǎn)
處的切線方程為
,若對(duì)任意的
恒有,求
的取值范圍(
是自然對(duì)數(shù)的底數(shù))。
【答案】(1) 當(dāng)時(shí),
在
上單調(diào)遞增;當(dāng)
時(shí),
在
上單調(diào)遞增,在
上單調(diào)遞減;當(dāng)
時(shí),
在
上單調(diào)遞增,在
上單調(diào)遞減;(2)
【解析】試題分析:
(1)求導(dǎo)數(shù),分三種情況分別討論導(dǎo)函數(shù)的符號(hào),從而得到函數(shù)的單調(diào)情況。(2)根據(jù)導(dǎo)數(shù)的幾何意義可得
,從而
。故由題意得
對(duì)任意的
恒成立。設(shè)
,
,根據(jù)單調(diào)性可求得
,從而可得
。
試題解析:
(1)當(dāng)時(shí),
,
所以。
令,解得
或
,
①當(dāng)時(shí),
,所以
在
上單調(diào)遞增;
②當(dāng)時(shí),
,列表得:
所以在
上單調(diào)遞增,在
上單調(diào)遞減;
③當(dāng)時(shí),
,列表得:
所以在
上單調(diào)遞增,在
上單調(diào)遞減。
綜上可得,當(dāng)時(shí),
在
上單調(diào)遞增;
當(dāng)時(shí),
在
上單調(diào)遞增,在
上單調(diào)遞減;
當(dāng)時(shí),
在
上單調(diào)遞增,在
上單調(diào)遞減。
(2)因?yàn)?/span>,
所以,
由題意得,
整理得,解得
所以,
因?yàn)?/span>對(duì)任意的
恒成立,
所以對(duì)任意的
恒成立,
設(shè),
則,
所以當(dāng)時(shí),
單調(diào)遞減,
當(dāng)時(shí),
單調(diào)遞增。
因?yàn)?/span>,
所以,
所以,
解得。
所以實(shí)數(shù)的取值范圍為
。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐 中,
平面
,底面
為菱形,且
,
為
的中點(diǎn).
(1)證明:平面
;
(2)若,
,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天干地支紀(jì)年法,源于中國,中國自古便有十天干與十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀(jì)年法是按順序以一個(gè)天干和一個(gè)地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推,排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”,“乙亥”,之后地支回到“子”重新開始,即“丙子”,…,以此類推,已知2016年為丙申年,那么到改革開放100年時(shí),即2078年為________年
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
、
,橢圓的離心率為
,過橢圓
的左焦點(diǎn)
,且斜率為
的直線
,與以右焦點(diǎn)
為圓心,半徑為
的圓
相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)線段是橢圓
過右焦點(diǎn)
的弦,且
,求
的面積的最大值以及取最大值時(shí)實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,
,二面角
的大小為120°,點(diǎn)
在棱
上,且
,點(diǎn)
為
的重心.
(1)證明:平面
;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)若數(shù)列{an}是的遞增等差數(shù)列,其中的a3=5,且a1,a2,a5成等比數(shù)列,
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前項(xiàng)的和Tn.
(3)是否存在自然數(shù)m,使得 <Tn<
對(duì)一切n∈N*恒成立?若存在,求出m的值;
若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的極大值為16,極小值為-16.
(1)求和
的值;
(2)若過點(diǎn)可作三條不同的直線與曲線
相切,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m,n為平面α外兩條直線,其在平面α內(nèi)的射影分別是兩條直線m1和n1,給出下列4個(gè)命題:①m1∥n1m∥n;②m∥nm1與n1平行或重合;③m1⊥n1m⊥n;④m⊥nm1⊥n1.其中所有假命題的序號(hào)是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)購是現(xiàn)在比較流行的一種購物方式,現(xiàn)隨機(jī)調(diào)查50名個(gè)人收入不同的消費(fèi)者是否喜歡網(wǎng)購,調(diào)查結(jié)果表明:在喜歡網(wǎng)購的25人中有18人是低收入的人,另外7人是高收入的人,在不喜歡網(wǎng)購的25人中有6人是低收入的人,另外19人是高收入的人.
喜歡網(wǎng)購 | 不喜歡網(wǎng)購 | 總計(jì) | |
低收入的人 | |||
高收入的人 | |||
總計(jì) |
(Ⅰ)試根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并用獨(dú)立性檢驗(yàn)的思想,指出有多大把握認(rèn)為是否喜歡網(wǎng)購與個(gè)人收入高低有關(guān)系;
(Ⅱ)將5名喜歡網(wǎng)購的消費(fèi)者編號(hào)為1、2、3、4、5,將5名不喜歡網(wǎng)購的消費(fèi)者編號(hào)也記作1、2、3、4、5,從這兩組人中各任選一人進(jìn)行交流,求被選出的2人的編號(hào)之和為2的倍數(shù)的概率.
參考公式:
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com