日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知直線,過點(diǎn)的直線分別與直線交于,其中點(diǎn)在第三象限,點(diǎn)在第二象限,點(diǎn)

          1)若的面積為,求直線的方程;

          2)直線交于點(diǎn),直線于點(diǎn),若直線的斜率均存在,分別設(shè)為,判斷是否為定值?若為定值,求出該定值;若不為定值,說明理由.

          【答案】(1)(2)為定值,詳見解析

          【解析】

          1)設(shè)直線方程為,與直線,分別聯(lián)立,可得的縱坐標(biāo),再由的面積為,解方程可得k,進(jìn)而得到所求直線方程;

          2)求得A,B的坐標(biāo),設(shè),運(yùn)用三點(diǎn)共線的條件:斜率相等,求得,,再由兩點(diǎn)的斜率公式,化簡整理,計(jì)算即可得到所求定值.

          解:(1)設(shè)直線方程為,

          與直線,分別聯(lián)立,

          可得的縱坐標(biāo)分別為,

          的面積為16

          ,

          解得,

          ∴直線l的方程為;

          2)由(1)可得,

          ,設(shè),

          共線,可得

          ,解得,

          即有

          共線,可得

          ,解得

          即有,

          即有為定值

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)圓的圓心為,直線過點(diǎn)且與軸不重合,直線交圓,兩點(diǎn),過點(diǎn)的平行線交于點(diǎn).

          1)證明為定值,并寫出點(diǎn)的軌跡方程;

          2)設(shè)點(diǎn)的軌跡為曲線,直線兩點(diǎn),過點(diǎn)且與直線垂直的直線與圓交于,兩點(diǎn),求四邊形面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過、三點(diǎn).

          1)求橢圓的方程;

          2)若直線)與橢圓交于、兩點(diǎn),證明直線與直線的交點(diǎn)在直線上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4—4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,其中為參數(shù),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為.

          (1)求直線的直角坐標(biāo)方程與曲線的普通方程;

          (2)若是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn).求點(diǎn)到直線的距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,圓C:x2+y2+4x-2y+m=0與直線相切.

          (1)求圓C的方程;

          (2)若圓C上有兩點(diǎn)M,N關(guān)于直線x+2y=0對(duì)稱,且,求直線MN的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的短軸長為,且離心率為,圓

          (1)求橢圓C的方程,

          (2)點(diǎn)P在圓D上,F為橢圓右焦點(diǎn),線段PF與橢圓C相交于Q,若,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù),

          (1)若曲線在點(diǎn)處的切線與軸平行,求;

          (2)當(dāng)時(shí),函數(shù)的圖象恒在軸上方,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某研究所計(jì)劃利用神七宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品AB,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:


          產(chǎn)品A()

          產(chǎn)品B()


          研制成本與塔載
          費(fèi)用之和(萬元/)

          20

          30

          計(jì)劃最大資
          金額300萬元

          產(chǎn)品重量(千克/)

          10

          5

          最大搭載
          重量110千克

          預(yù)計(jì)收益(萬元/)

          80

          60


          試問:如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;

          (Ⅱ)當(dāng)時(shí),證明:.(為自然對(duì)數(shù)的底數(shù))

          查看答案和解析>>

          同步練習(xí)冊答案