日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖, 在四棱錐中,為等邊三角形, 平面平面,四邊形是高為 的等腰梯形, 的中點(diǎn).

          1求證:;

          2到平面的距離.

          【答案】1詳見解析2

          【解析】

          試題分析:1證明線線垂直,一般利用線面垂直判定與性質(zhì)定理,經(jīng)多次轉(zhuǎn)化得證,而其中轉(zhuǎn)化時(shí),往往需結(jié)合平幾中垂直條件,如等比三角形中線垂直底邊,對應(yīng)面面垂直條件,一般利用面面垂直性質(zhì)定理將其轉(zhuǎn)化為線面垂直,即由平面平面平面平面,2求點(diǎn)到面距離,一般利用等體積法求高或根據(jù)線面垂直作高,由于1平面,因而可將其轉(zhuǎn)化為面面垂直:取的中點(diǎn),則平面平面,再過,則得平面,即到平面的距離,然后在對應(yīng)三角形中求解即可.

          試題解析:1證明:因?yàn)?/span>是等邊三角形,的中點(diǎn), 所以.又因?yàn)槠矫?/span>平面平面,平面平面,所以平面,又平面,所以.

          2的中點(diǎn),連接,由題設(shè)知,, 1 平面,又平面,所以.因?yàn)?/span>,所以平面.過,垂足為,則,因?yàn)?/span>,所以平面.因?yàn)?/span>,所以,即到平面的距離為.另外用等體積法亦可

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè),。

          (1)求的單調(diào)區(qū)間;

          (2)討論零點(diǎn)的個(gè)數(shù);

          (3)當(dāng)時(shí),設(shè)恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后平均每人每年創(chuàng)造利潤為萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高

          (1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?

          (2)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤條件下,若要求調(diào)整出的員工創(chuàng)造出的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則的取值范圍是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)討論的單調(diào)性;

          2)若有兩個(gè)不同的零點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知曲線為參數(shù))和定點(diǎn),是曲線的左、右焦點(diǎn),以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同單位長度建立極坐標(biāo)系.

          1)求直線的極坐標(biāo)方程;

          2)經(jīng)過點(diǎn)且與直線垂直的直線交曲線兩點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】過橢圓E1ab0)上一動(dòng)點(diǎn)P向圓Ox2+y2b2引兩條切線PA,PB,切點(diǎn)分別是A,B.直線AB分別與x軸,y軸交于點(diǎn)M,NO為坐標(biāo)原點(diǎn)).

          1)若在橢圓E上存在點(diǎn)P,滿足PAPB,求橢圓E的離心率的取值范圍;

          2)求證:在橢圓E內(nèi),存在一點(diǎn)C滿足|CO||CA||CP||CB|;

          3)若橢圓E的短軸長為2,△MON面積的最小值為,求橢圓E的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將函數(shù)的圖象向左平移個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,得到的圖象,下面四個(gè)結(jié)論正確的是( )

          A. 函數(shù)在區(qū)間上為增函數(shù)

          B. 將函數(shù)的圖象向右平移個(gè)單位后得到的圖象關(guān)于原點(diǎn)對稱

          C. 點(diǎn)是函數(shù)圖象的一個(gè)對稱中心

          D. 函數(shù)上的最大值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】汕尾市基礎(chǔ)教育處為調(diào)查在校中學(xué)生每天放學(xué)后的自學(xué)時(shí)間情況,在本市的所有中學(xué)生中隨機(jī)抽取了120名學(xué)生進(jìn)行調(diào)查,現(xiàn)將日均自學(xué)時(shí)間小于1小時(shí)的學(xué)生稱為“自學(xué)不足”者根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)后,得到如下列聯(lián)表,已知在調(diào)查對象中隨機(jī)抽取1人,為“自學(xué)不足”的概率為

          非自學(xué)不足

          自學(xué)不足

          合計(jì)

          配有智能手機(jī)

          30

          沒有智能手機(jī)

          10

          合計(jì)

          請完成上面的列聯(lián)表;

          根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“自學(xué)不足”與“配有智能手機(jī)”有關(guān)?

          附表及公式: ,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,橢圓C:的左、右焦點(diǎn)分別為,P為橢圓C上一點(diǎn),且垂直于軸,連結(jié)并延長交橢圓于另一點(diǎn),設(shè)

          (1)若點(diǎn)的坐標(biāo)為,求橢圓的方程;

          (2)若,求橢圓的離心率的取值范圍

          查看答案和解析>>

          同步練習(xí)冊答案